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What is interpretability?

Research focused on explaining complex AI systems  
in a human-interpretable way.
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Why interpretability?

• 🔬 Science 
• 🤝 Trust 
• 🤖 Learning

https://emojipedia.org/handshake/
https://emojipedia.org/robot/
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An incomplete retrospective: the first decade of deep learning

2012 2022

CNNs (2012-2016) 
AlexNet, VGG16, 

GoogLeNet, ResNet50

GANs (2014-2018) 
GAN, ProGAN, CycleGAN

Diffusion models (2020-now) 
DDPM, DALL-E 2, Imagen

Transformers (2017-now) 
Transformer, BERT, ViT

Self-supervised learning (2016-now) 
Colorization, MOCO, SWaV

[Krizhevsky et al., NeurIPS 2012; Zhu* & Park* et al., ICCV 2017; Zhang et al., ECCV 2016; 
 Dosovitskiy* et al., ICLR 2021; Ramesh et al., arXiv 2022]
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An incomplete retrospective: the first decade of interpretability

2012 2022

Feature visualization (2013-2018) 
Activation Max., Feature Inversion,  

Net Dissect, Feature Vis.

Attribution heatmaps (2013-2019) 
Gradient, Grad-CAM, 

Occlusion, Perturbations, RISE

Interpretable-by-design (2020-now) 
Concept Bottleneck, ProtoPNet,  

ProtoTree

[Selvaraju et al., ICCV 2017; Fong* & Patrick* et al., ICCV 2019;  
Bau* & Zhou* et al., CVPR 2017; Olah et al., Distill 2017; Koh*, Nguyen*, Tang* et al., ICML 2020]
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An incomplete retrospective: the first decade of interpretability

2012 2022

Attribution heatmaps (2013-2019) 
Gradient, Grad-CAM, 

Occlusion, Perturbations, RISE

Feature visualization (2013-2018) 
Activation Max., Feature Inversion,  

Net Dissect, Feature Vis.

Interpretable-by-design (2020-now) 
Concept Bottleneck, ProtoPNet,  

ProtoTree

[Selvaraju et al., ICCV 2017; Fong* & Patrick* et al., ICCV 2019;  
Bau* & Zhou* et al., CVPR 2017; Olah et al., Distill 2017; Koh*, Nguyen*, Tang* et al., ICML 2020]

Primarily focused on understanding 
and approximating CNNs 

Exceptions: 
GANPaint [Bau et al., ICLR 2019] 

Transformer Circuits [Elhage et al., 2021]
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Directions for the next decade of interpretability

1. Develop interpretability methods for diverse domains 
• Beyond CNN classifiers: self-supervised learning, generative models, etc. 

2. Center humans throughout the development process 
• In design, co-develop methods with real-world stakeholders. 
• In evaluation, measure human interpretability and utility of methods. 
• In deployment, package interpretability tools for the wider community.
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Roadmap

1. Automated evaluation of interpretability → human-centered evaluation  
Sunnie S. Y. Kim, Nicole Meister, Vikram V. Ramaswamy, Ruth Fong, Olga Russakovsky, ECCV 2022. 
HIVE: Evaluating the Human Interpretability of Visual Explanations. 

2. Static visualizations → interactive visualizations  
Ruth Fong, Alexander Mordvintsev, Andrea Vedaldi, Chris Olah, VISxAI 2021. 
Interactive Similarity Overlays.
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Roadmap

1. Automated evaluation of interpretability → human-centered evaluation  
Sunnie S. Y. Kim, Nicole Meister, Vikram V. Ramaswamy, Ruth Fong, Olga Russakovsky, ECCV 2022. 
HIVE: Evaluating the Human Interpretability of Visual Explanations. 

2. Static visualizations → interactive visualizations  
Ruth Fong, Alexander Mordvintsev, Andrea Vedaldi, Chris Olah, VISxAI 2021. 
Interactive Similarity Overlays.

Sunnie S. Y. KimSunnie S. Y. Kim
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Explanation form factors: Why did the model predict Y?

Heatmap explanations 
(e.g. Grad-CAM)

Prototype explanations 
(e.g. ProtoPNet)

[Selvaraju et al., ICCV 2017; Koh*, Nguyen*, Tang* et al., ICML 2020;  
Chen* & Li* et al., NeurIPS 2019; Wang & Vasconcelos, CVPR 2020]

Why Cardinal (L) and not 
Summer Tanager (R)?

Counterfactual explanations 
(e.g. SCOUT)

Concept-based explanations 
(e.g. Concept Bottleneck)
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Explanation form factors: Why did the model predict Y?

[Koh*, Nguyen*, Tang* et al., ICML 2020. Concept Bottleneck; 
Kim et al., ICML 2018. TCAV.]

Non-heatmap form factors (e.g. concept-based explanations) 
are more suitable for fine-grain tasks in medical imaging

Concept Bottleneck 
Knee x-rays → knee osteoarthritis 

TCAV 
Retinal fundus imaging → diabetic 

retinopathy 



• Weak localization performance [Zhang et al., ECCV 2016] 
• Perturbation analysis 

• Deletion game [Samek et al., TNNLS 2017] 
• Retrain with removed features [Hooker et al., NeurIPS 2019] 

• Sensitivity to… 
• output neuron [Rebuffi*, Fong*, Ji* et al., CVPR 2020] 
• model parameters [Adebayo et al., NeurIPS 2018] 

• … 

• Sheng & Huang, HCOMP 2020 
Guess the incorrectly predicted label 

• Nguyen et al., NeurIPS 2021 
Is this prediction correct? 

• Colin* & Fel* et al., arXiv 2021 
What did the model predict (choose one of two)? 
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Current metrics focus on heatmap evaluation

Automatic Human
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HIVE: Evaluating the Human Interpretability of Visual Explanations

1. Within method → Cross-method comparison 

2. Automated evaluation →  Human-centered evaluation 

3. Intuition-based reasoning →  Falsifiable hypothesis testing

Sunnie S. Y. Kim, Nicole Meister, Vikram V. Ramaswamy, Ruth Fong, Olga Russakovsky, ECCV 2022. 
HIVE: Evaluating the Human Interpretability of Visual Explanations.
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Our contributions

• Novel human study design for evaluating 4 diverse interpretability methods 
• First human study for interpretable-by-design and prototype methods 

• Quantify the utility of explanations in distinguishing between correct and incorrect predictions 
• Quantify how users would trade off between interpretability and accuracy 
• Open-source HIVE studies to encourage reproducible research

[Sunnie S. Y. Kim et al., ECCV 2022. HIVE.]
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1. Cross-method comparison
Grad-CAM BagNet

ProtoPNet ProtoTree
heatmap prototype

post-hoc

interpretable-by-design

Grad-CAM

BagNet
ProtoPNet

ProtoTree

[Selvaraji et al., ICCV 2017; Brendel & Bethge, ICLR 2019; 
Chen* & Li* et al., NeurIPS 2019, Nauta et al., CVPR 2021]

Follow up: Ramaswamy et al., arXiv 2022.  
Overlooked factors in concept-based explanations: 

Dataset choice, concept salience, and human capability.
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2. Human-centered evaluation

Agreement task 
How confident are you in the model’s prediction?

Distinction task 
Which class do you think is correct?

[Sunnie S. Y. Kim et al., ECCV 2022. HIVE.; Chen* & Li* et al., NeurIPS 2019]

Experimental set-up:  AMT studies with N=50 participants each
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2. Human-centered evaluation

Agreement task 
How confident are you in the model’s prediction?

Finding #1: Prototype similarities often do not 
align with human notions of similarity.

[Sunnie S. Y. Kim et al., ECCV 2022. HIVE.; Chen* & Li* et al., NeurIPS 2019]

ProtoPNet and ProtoTree only
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2. Human-centered evaluation

Agreement task 
How confident are you in the model’s prediction?

Finding #2: Agreement task reveals 
confirmation bias.

Finding #1: Prototype similarities often do not 
align with human notions of similarity.

[Sunnie S. Y. Kim et al., ECCV 2022. HIVE.; Chen* & Li* et al., NeurIPS 2019]

More than 50% were fairly or somewhat 
confident that a prediction is correct (even for 

incorrect predictions).
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2. Human-centered evaluation

Distinction task 
Which class do you think is correct?

Finding #3: Participants struggle to identify the 
correct class, esp. for incorrect predictions.

[Sunnie S. Y. Kim et al., ECCV 2022. HIVE.; Selvaraju et al., ICCV 2017]

Goal: Interpretability should help humans  
identify and explain model errors.

For incorrect predictions, correctly answered 
around 25% of the time (random guessing).
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3. Falsifiable hypothesis testing

Finding #2: Agreement task reveals 
confirmation bias.

Finding #1: Prototype similarities often do not 
align with human notions of similarity.

Finding #3: Participants struggle to identify the 
correct class, esp. for incorrect predictions.

[Sunnie S. Y. Kim et al., ECCV 2022. HIVE.]
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3. Falsifiable hypothesis testing

Finding #2: Agreement task reveals 
confirmation bias.

Finding #1: Prototype similarities often do not 
align with human notions of similarity.

Finding #3: Participants struggle to identify the 
correct class, esp. for incorrect predictions.

[Sunnie S. Y. Kim et al., ECCV 2022. HIVE.]

Interpretability-accuracy tradeoff 
Q: What is the minimum accuracy of a 
baseline model that would convince 
you to use it over a model with 
explanations?

Finding #4: Participants prefer interpretability 
over accuracy, esp. in high-risk settings.

(e.g. educational 
purposes)

(e.g. biodiversity  
monitoring)

(e.g. veterinary 
medicine)
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Challenges for human evaluation

• Skill cost: web development skills 
• Financial cost: budget for AMT experiments 
• Time cost: human study design and iteration (e.g. task feasibility, IRB approval, quality control)

Takeaway: As a research community, invest in and reward human evaluation studies (like dataset development).
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Roadmap

1. Automated evaluation of interpretability → human-centered evaluation  
Sunnie S. Y. Kim, Nicole Meister, Vikram V. Ramaswamy, Ruth Fong, Olga Russakovsky, arXiv 2021. 
HIVE: Evaluating the Human Interpretability of Visual Explanations. 

2. Static visualizations → interactive visualizations  
Ruth Fong, Alexander Mordvintsev, Andrea Vedaldi, Chris Olah, VISxAI 2021. 
Interactive Similarity Overlays.
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Interpretability Tools

[Fong et al., ICCV 2019; Selvaraju et al., ICCV 2017; Bau et al., CVPR 2017;  
Mahendran & Vedaldi, IJCV 2016; Olah et al., Distill 2018; Fong et al., VISxAI 2021]      

Future tools should be interactive!Current tools render static images.

Feature VisNet Dissect Activation Maximization
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Interpretability: Interactive, Exploratory, Easy-to-use

c1 c2 c3 c4 c5 f6 f7 f8

How can we easily explore hypotheses about the model?

Acknowledgement: Chris Olah

sheepdog
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Interactive Similarity Overlays

Ruth Fong, Alexander Mordvintsev, Andrea Vedaldi, Chris Olah, VISxAI 2021. 
Interactive Similarity Overlays. 
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Spatial Activations

fbfa golden retriever



28[Olah et al., Distill 2018]

Spatial Activations

fbfa golden retriever
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Interactive Similarity Overlays

[Olah et al., Distill 2018]
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Interactive Similarity Overlays

x0

x1

θ

[Fong et al., VISxAI 2021. Interactive Similarity Overlays.] 
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Demo: Interactive Similarity Overlays

Interactive visualizations empower practitioners to easily explore model behavior.

bit.ly/interactive_overlay

[Fong et al., VISxAI 2021. Interactive Similarity Overlays.] 

http://bit.ly/interactive_overlay
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Preview: Interactive Visual Feature Search

Devon Ulrich and Ruth Fong, in prep 2022. 
Interactive Visual Feature Search. 

Acknowledgement: David Bau 

Devon Ulrichbit.ly/interactive_search

http://bit.ly/interactive_search
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Challenges for interactive visualizations

• Skills cost: web development skills 
• 📈 HuggingFace Spaces, Gradio, Streamlit 

• Potential misuse: Intuition-based insights should be validated via quantitative experiments 
• Poor incentives: software tooling for research is often not rewarded 
• Inadequate publishing structures: Sparse publishing venues for interactive articles and/or visualizations 

• 📉 Distill journal hiatus 

• 📈 CVPR demo track 
• Lack of cross-talk: HCI and AI communities are developing interpretability tools fairly independently

Takeaway: Relevant research communities should collectively invest in and reward 
software tooling for research, particularly interactive tools.

https://emojipedia.org/chart-increasing/
https://emojipedia.org/chart-decreasing/
https://emojipedia.org/chart-increasing/
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Takeaways from challenges in interpretability

• Human studies: As a research community, invest in and reward human evaluation studies (like dataset 
development). 

• Interactive visualizations: Relevant research communities should collectively invest in and reward 
software tooling for research, particularly interactive tools.
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Directions for the next decade of interpretability

1. Develop interpretability methods for diverse domains 
• Beyond CNN classifiers: self-supervised learning, generative models, etc. 

2. Center humans throughout the development process 
• In design, co-develop methods with real-world stakeholders. 
• In evaluation, measure human interpretability and utility of methods. 
• In deployment, package interpretability tools for the wider community.

ICML 2020 workshop on XXAI

http://interpretable-ml.org/icml2020workshop/
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An incomplete retrospective: the first decade of interpretability

[Selvaraju et al., ICCV 2017; Fong* & Patrick* et al., ICCV 2019;  
Bau* & Zhou* et al., CVPR 2017; Olah et al., Distill 2017; Koh*, Nguyen*, Tang* et al., ICML 2020]

2012 2022

Feature visualization (2013-2018) 
Activation Max., Feature Inversion,  

Net Dissect, Feature Vis.

Attribution heatmaps (2013-2019) 
Gradient, Grad-CAM, 

Occlusion, Perturbations, RISE

Interpretable-by-design (2020-now) 
Concept Bottleneck, ProtoPNet,  

ProtoTree

Primarily focused on understanding 
and approximating CNNs
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Into the future: the next decade of interpretability

2022 2032

???
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Andrea Vedaldi Chris Olah Alex Mordvintsev Olga Russakovsky

Iro Laina Devon Ulrich Nicole Meister Sunnie S. Y. Kim Vikram V. 
Ramaswamy

We’re hiring postdocs!

Talk acknowledgements: Brian Zhang, Sunnie S. Y. Kim,  
Vikram V. Ramaswamy, Olga Russakovsky

bit.ly/vai-lg-postdoc

http://bit.ly/vai-lg-postdoc
http://bit.ly/vai-lg-postdoc
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Thank You


