# Directions in Interpretability

## Ruth Fong

CVPR 2022, Human-Centered AI Tutorial

June 20, 2022

Slides and links available at <u>ruthfong.com</u>





## What is interpretability?

## Research focused on explaining **complex AI systems** in a **human-interpretable** way.



## Why interpretability?









## An incomplete retrospective: the first decade of deep learning

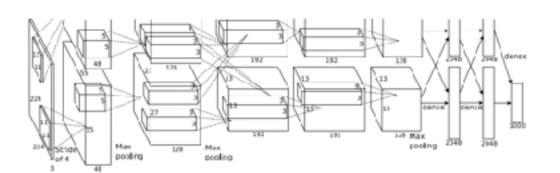


Monet  $\rightarrow$  photo

## IMAGENET

### **GANs (2014-2018)** GAN, ProGAN, <u>CycleGAN</u>

2012

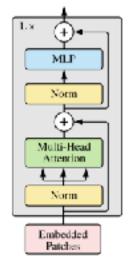


**CNNs (2012-2016)** <u>AlexNet</u>, VGG16, GoogLeNet, ResNet50



### Self-supervised learning (2016-now) Colorization, MOCO, SWaV

[Krizhevsky et al., NeurIPS 2012; Zhu\* & Park\* et al., ICCV 2017; Zhang et al., ECCV 2016; Dosovitskiy\* et al., ICLR 2021; Ramesh et al., arXiv 2022]



## **Transformers (2017-now)** Transformer, BERT, <u>ViT</u>



### **Diffusion models (2020-now)** DDPM, <u>DALL-E 2</u>, Imagen

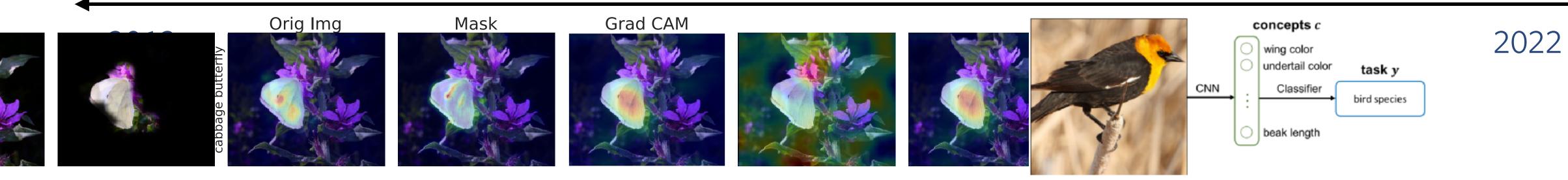
2022



## An incomplete retrospective: the first decade of interpretability



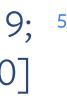
Feature visualization (2013-2018) Activation Max., Feature Inversion, Net Dissect, Feature Vis.



### Attribution heatmaps (2013-2019) Gradient, Grad-CAM, Occlusion, Perturbations, RISE

[Selvaraju et al., ICCV 2017; Fong\* & Patrick\* et al., ICCV 2019; 5 Bau\* & Zhou\* et al., CVPR 2017; Olah et al., Distill 2017; Koh\*, Nguyen\*, Tang\* et al., ICML 2020]

### Interpretable-by-design (2020-now) Concept Bottleneck, ProtoPNet, ProtoTree



## An incomplete retrospective: the first decade of interpretability

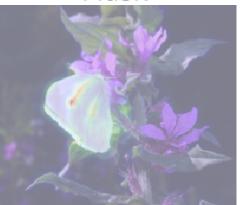


Primarily focused on understanding and approximating **CNNs** 



Orig Img





Exceptions: GANPaint [Bau et al., ICLR 2019] Transformer Circuits [Elhage et al., 2021]

### **Attribution heatmaps (2013-2019)** Gradient, Grad-CAM, Occlusion, Perturbations, RISE

[Selvaraju et al., ICCV 2017; Fong\* & Patrick\* et al., ICCV 2019; 6 Bau\* & Zhou\* et al., CVPR 2017; Olah et al., Distill 2017; Koh\*, Nguyen\*, Tang\* et al., ICML 2020]

|     | 0 | oncepts c<br>wing color<br>undertail color<br>Classifier | <b>task y</b><br>bird species | 2022 |
|-----|---|----------------------------------------------------------|-------------------------------|------|
| No. | : | beak length                                              | bird species                  |      |

### Interpretable-by-design (2020-now) Concept Bottleneck, ProtoPNet, ProtoTree



# Directions for the next decade of interpretability

- Develop interpretability methods for **diverse domains** 
  - Beyond CNN classifiers: self-supervised learning, generative models, etc.
- 2. Center **humans** throughout the development process
  - In design, co-develop methods with real-world stakeholders.
  - In evaluation, measure human interpretability and utility of methods.
  - In deployment, package interpretability tools for the wider community.



## Roadmap

- 1. Automated evaluation of interpretability → human-centered evaluation Sunnie S. Y. Kim, Nicole Meister, Vikram V. Ramaswamy, Ruth Fong, Olga Russakovsky, arXiv 2021. HIVE: Evaluating the Human Interpretability of Visual Explanations.
- 2. Vikram V. Ramaswamy, Sunnie S. Y. Kim, Nicole Meister, Ruth Fong, Olga Russakovsky, arXiv 2022. ELUDE: Generating Interpretable Explanations via a Decomposition into Labelled and Unlabelled Features.
- Interpretability of **supervised** models  $\rightarrow$  interpretability of **self-supervised** models 3. Iro Laina, Ruth Fong, Andrea Vedaldi, NeurIPS 2020. Quantifying Learnability and Describability of Visual Concepts Emerging in Representation Learning.
- **Static** visualizations  $\rightarrow$  **interactive** visualizations 4. Ruth Fong, Alexander Mordvintsev, Andrea Vedaldi, Chris Olah, VISxAI 2021. Interactive Similarity Overlays.

#### Explanations via labelled attributes -> explanations via labelled attributes and unlabelled features



## Roadmap

- **Automated** evaluation of interpretability → **human-centered** evaluation 1. Sunnie S. Y. Kim, Nicole Meister, Vikram V. Ramaswamy, Ruth Fong, Olga Russakovsky, arXiv 2021. HIVE: Evaluating the Human Interpretability of Visual Explanations.
- 2. Explanations via labelled attributes → explanations via labelled attributes and unlabelled features Vikram V. Ramaswamy, Sunnie S. Y. Kim, Nicole Meister, Ruth Fong, Olga Russakovsky, arXiv 2022. ELUDE: Generating Interpretable Explanations via a Decomposition into Labelled and Unlabelled Features.
- Interpretability of **supervised** models  $\rightarrow$  interpretability of **self-supervised** models 3. Iro Laina, Ruth Fong, Andrea Vedaldi, NeurIPS 2020. Quantifying Learnability and Describability of Visual Concepts Emerging in Representation Learning.
- **Static** visualizations  $\rightarrow$  **interactive** visualizations 4. Ruth Fong, Alexander Mordvintsev, Andrea Vedaldi, Chris Olah, VISxAI 2021. Interactive Similarity Overlays.



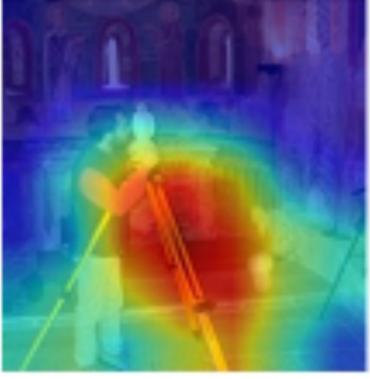
Sunnie S. Y. Kim



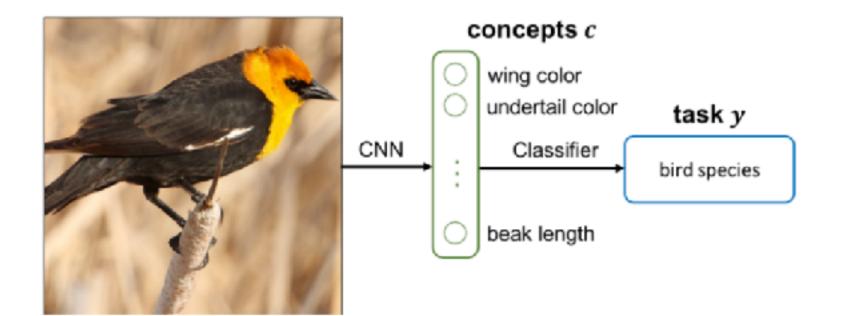


## Explanation form factors: Why did the model predict Y?



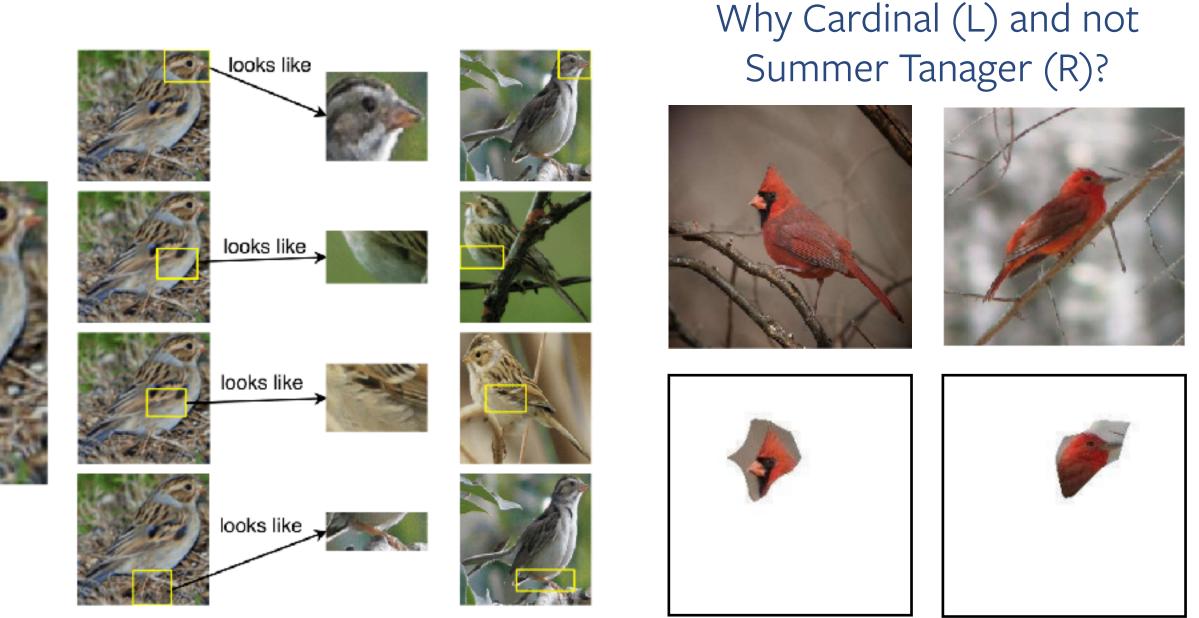


Heatmap explanations (e.g. Grad-CAM)





**Concept**-based explanations (e.g. Concept Bottleneck)



**Prototype** explanations (e.g. ProtoPNet)

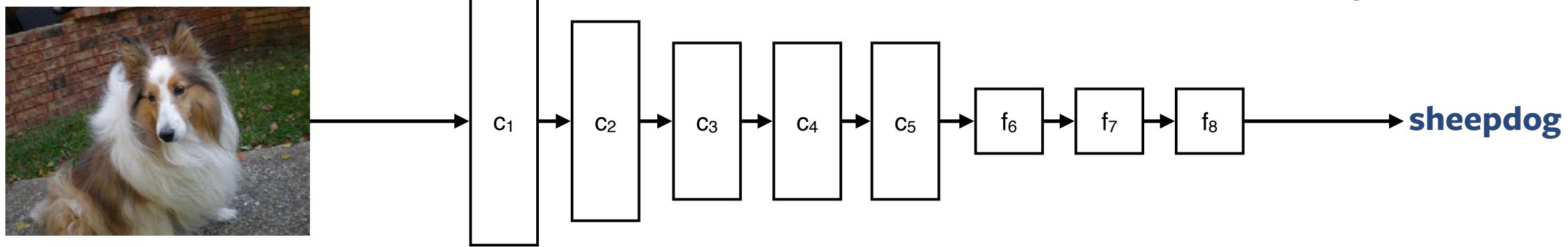
**Counterfactual** explanations (e.g. SCOUT)

[Selvaraju et al., ICCV 2017; Koh\*, Nguyen\*, Tang\* et al., ICML 2020; Chen\* & Li\* et al., NeurIPS 2019; Wang & Vasconcelos, CVPR 2020]





## Post-hoc explanations



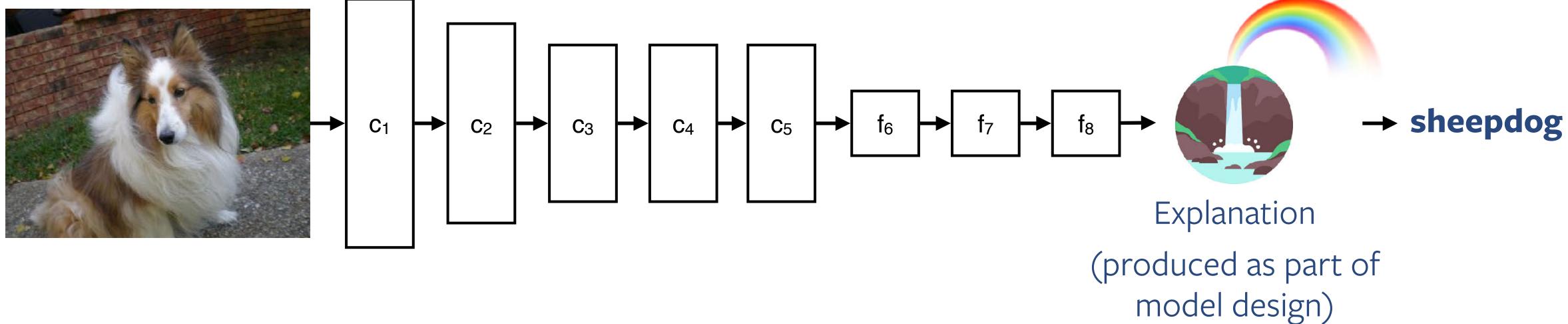


## Explanation (not part of model design)



11

## Interpretable-by-design models





12

## Current metrics focus on heatmap evaluation

- Weak localization performance [Zhang et al., ECCV 2016]
- Perturbation analysis
  - Deletion game [Samek et al., TNNLS 2017]
  - Retrain classifiers with removed features [Hooker et al., NeurIPS 2019]
- Sensitivity to...

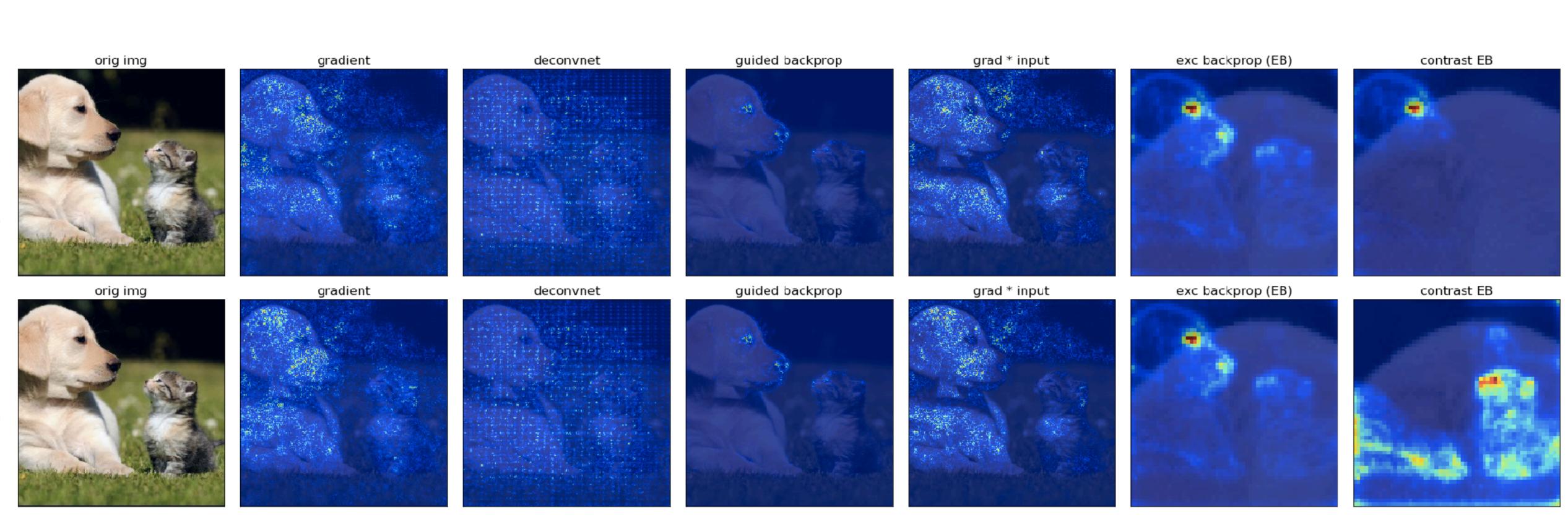
• ...

- output neuron [Rebuffi\*, Fong\*, Ji\* et al., CVPR 2020]
- model parameters [Adebayo et al., NeurIPS 2018]





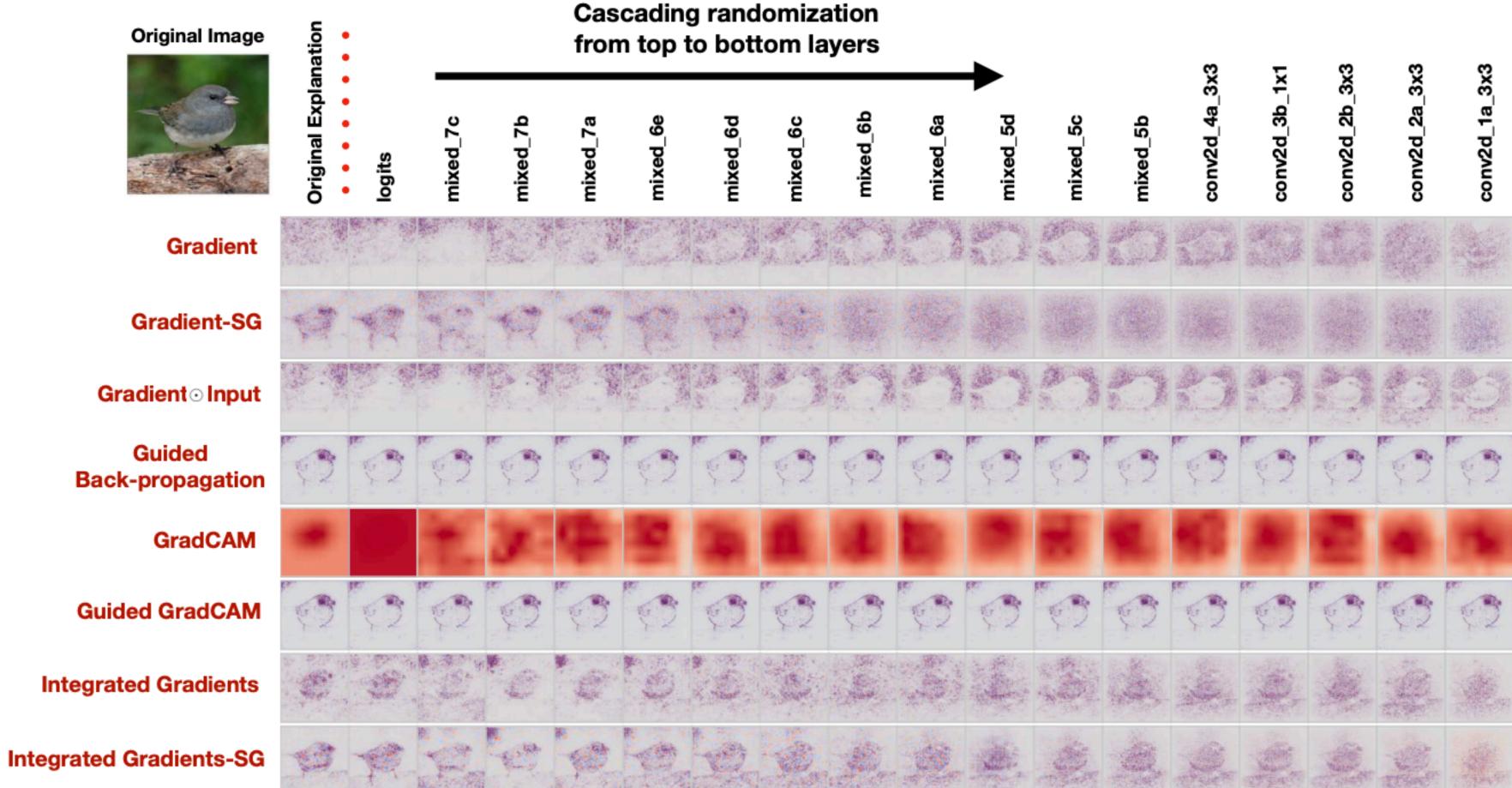
## Selectivity to output class



[Mahendran & Vedaldi, ECCV 2016; Rebuffi et al., CVPR 2020] 14



## Sensitivity to model parameters (a.k.a. sanity checks)



[Adebayo et al., NeurIPS 2018] <sup>15</sup>



## Current metrics focus on heatmap evaluation

- Sheng & Huang, HCOMP 2020 Guess the incorrectly predicted label
- Nguyen et al., NeurIPS 2021 Is this prediction correct?
- Colin\* & Fel\* et al., arXiv 2021
  What did the model predict (choose one of two)?

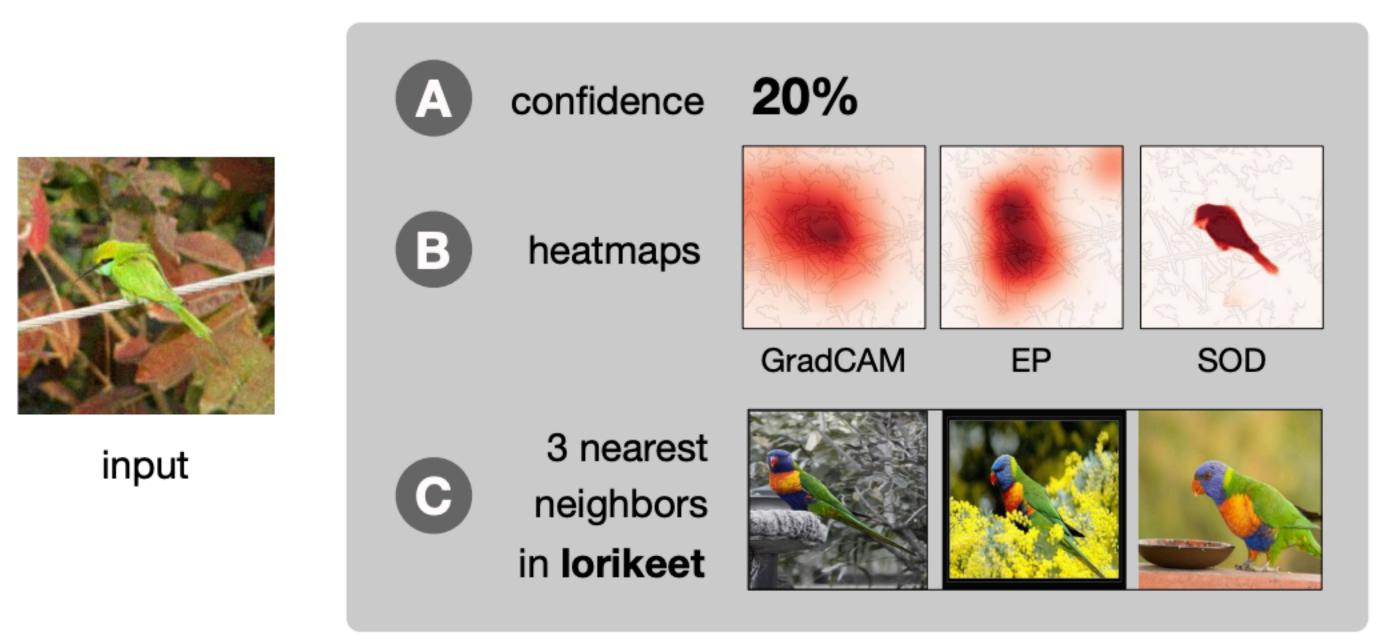


#### Human



## Is this prediction correct?

#### Al's top-1 predicted label: lorikeet



### lorikeet?



#### groundtruth label: "bee eater"

[Nguyen et al., NeurIPS 2021] 17

## HIVE: Evaluating the Human Interpretability of Visual Explanations

- 1. Within method → Cross-method comparison
- 2. Automated evaluation → Human-centered evaluation
- Intuition-based reasoning -> Falsifiable hypothesis testing 3.

Sunnie S. Y. Kim, Nicole Meister, Vikram V. Ramaswamy, Ruth Fong, Olga Russakovsky, arXiv 2021. HIVE: Evaluating the Human Interpretability of Visual Explanations.



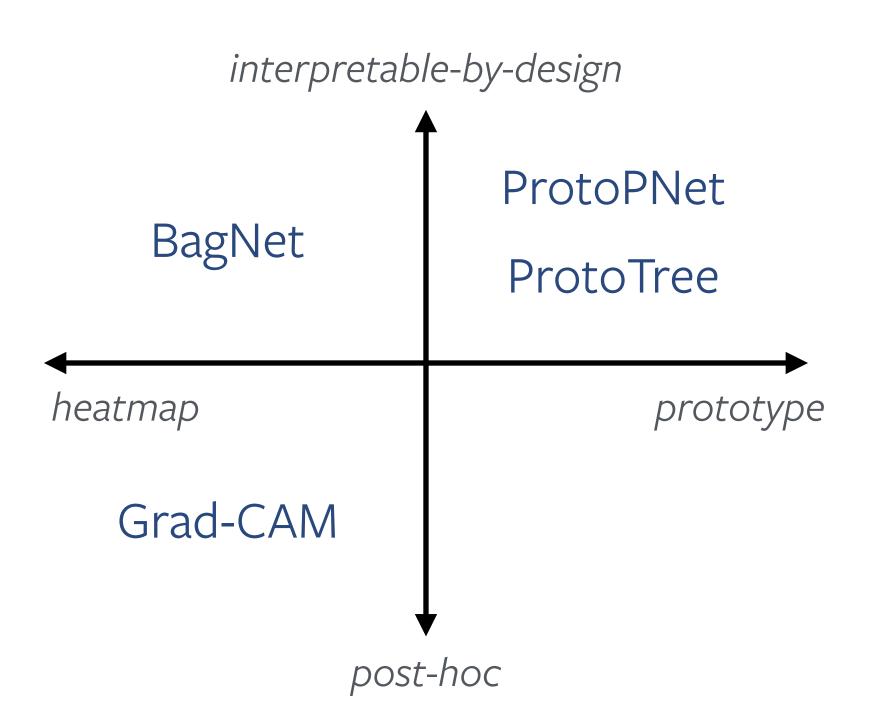
## Our contributions

- Novel human study design for evaluating 4 diverse interpretability methods
  - **First human study** for interpretable-by-design and prototype methods
- Quantify the utility of explanations in distinguishing between correct and incorrect predictions Quantify how users would trade off between interpretability and accuracy
- **Open-source** HIVE studies to encourage reproducible research

[Sunnie S. Y. Kim et al., arXiv 2021. HIVE.] 19



## 1. Cross-method comparison

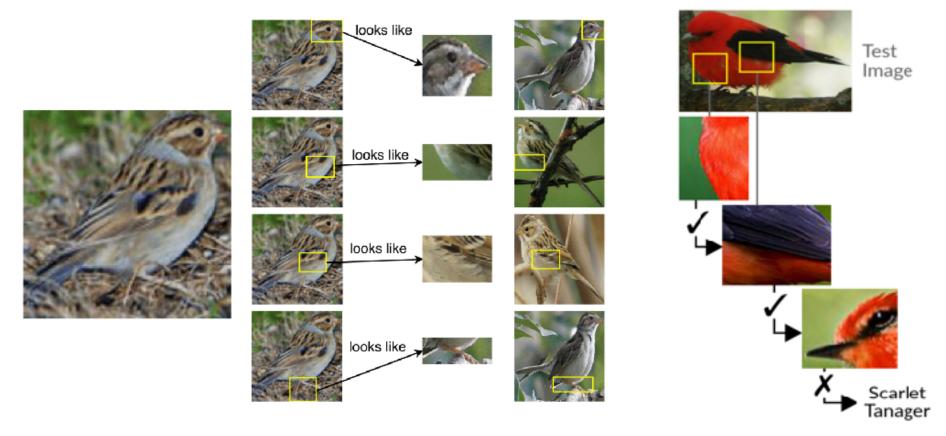


#### Grad-CAM

#### BagNet



ProtoTree



[Selvaraji et al., ICCV 2017; Brendel & Bethge, ICLR 2019; Chen\* & Li\* et al., NeurIPS 2019, Nauta et al., CVPR 2021]



### ProtoPNet



### **Agreement task**

How confident are you in the model's prediction?

Class A, because



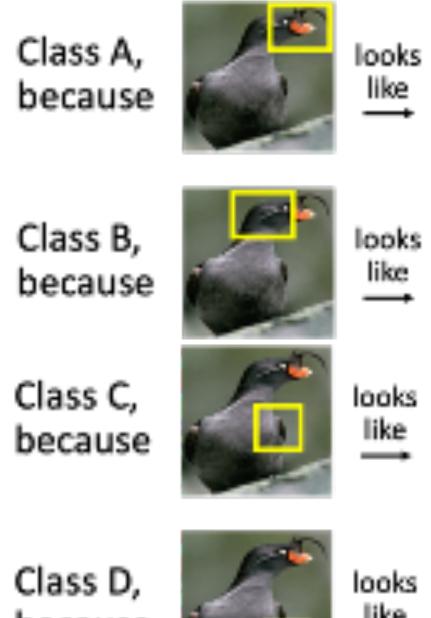
like

looks

Experimental set-up: AMT studies with N=50 participants each

### **Distinction task**

## Which class do you think is correct?





looks



because



looks IINE



[Sunnie S. Y. Kim et al., arXiv 2021. HIVE.; Chen\* & Li\* et al., NeurIPS 2019] <sup>21</sup>



### **Agreement task**

How confident are you in the model's prediction?

Finding #1: Prototype similarities often do not **align** with human notions of similarity.

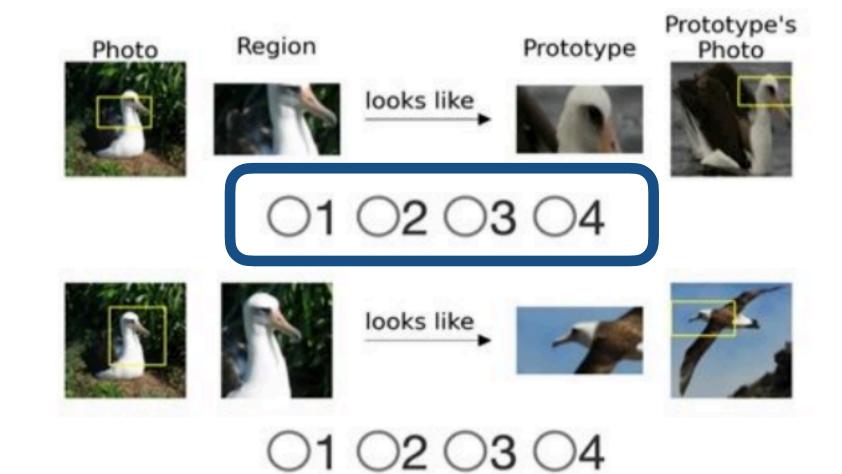
### ProtoPNet and ProtoTree only

### Task: Rate the similarity of each row's prototype-region pair on a scale of 1-4.

(1: Not Similar, 2: Somewhat Not Similar, 3: Somewhat Similar, 4: Similar)



Shown below is the model's explanation for its prediction (all prototypes and their source photos are from Species 2).



#### Q. What do you think about the model's prediction?

- Fairly confident that prediction is *correct*
- O Somewhat confident that prediction is correct
- O Somewhat confident that prediction is incorrect
- Fairly confident that prediction is incorrect

[Sunnie S. Y. Kim et al., arXiv 2021. HIVE.; Chen\* & Li\* et al., NeurIPS 2019] <sup>22</sup>





#### **Agreement task**

How confident are you in the model's prediction?

Finding #1: Prototype similarities often do not align with human notions of similarity.

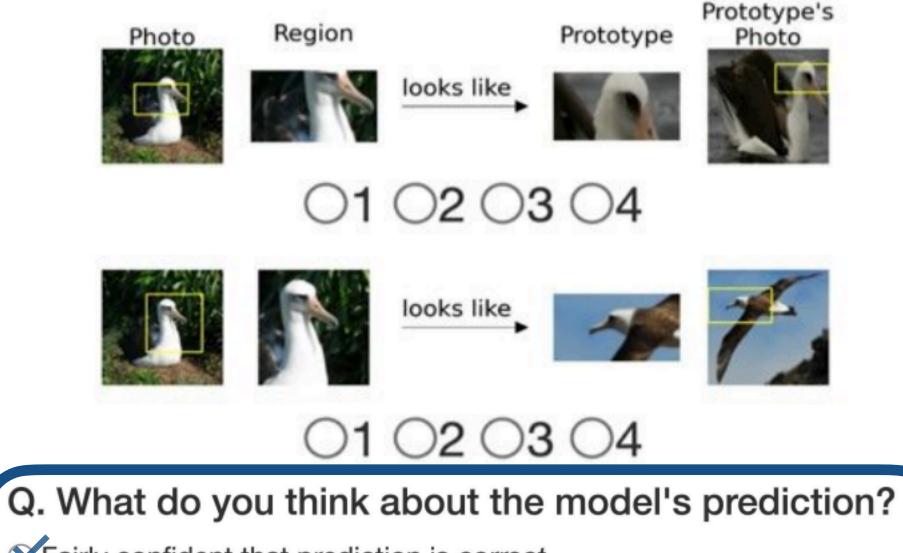
Finding #2: Agreement task reveals confirmation bias.

# Task: Rate the similarity of each row's prototype-region pair on a scale of 1-4.

(1: Not Similar, 2: Somewhat Not Similar, 3: Somewhat Similar, 4: Similar)



Shown below is the model's explanation for its prediction (all prototypes and their source photos are from **Species 2**).



Search Fairly confident that prediction is *correct* 

Somewhat confident that prediction is *correct* 

Somewhat confident that prediction is incorrect

○ Fairly confident that prediction is incorrect

[Sunnie S. Y. Kim et al., arXiv 2021. HIVE.; Chen\* & Li\* et al., NeurIPS 2019] <sup>23</sup>

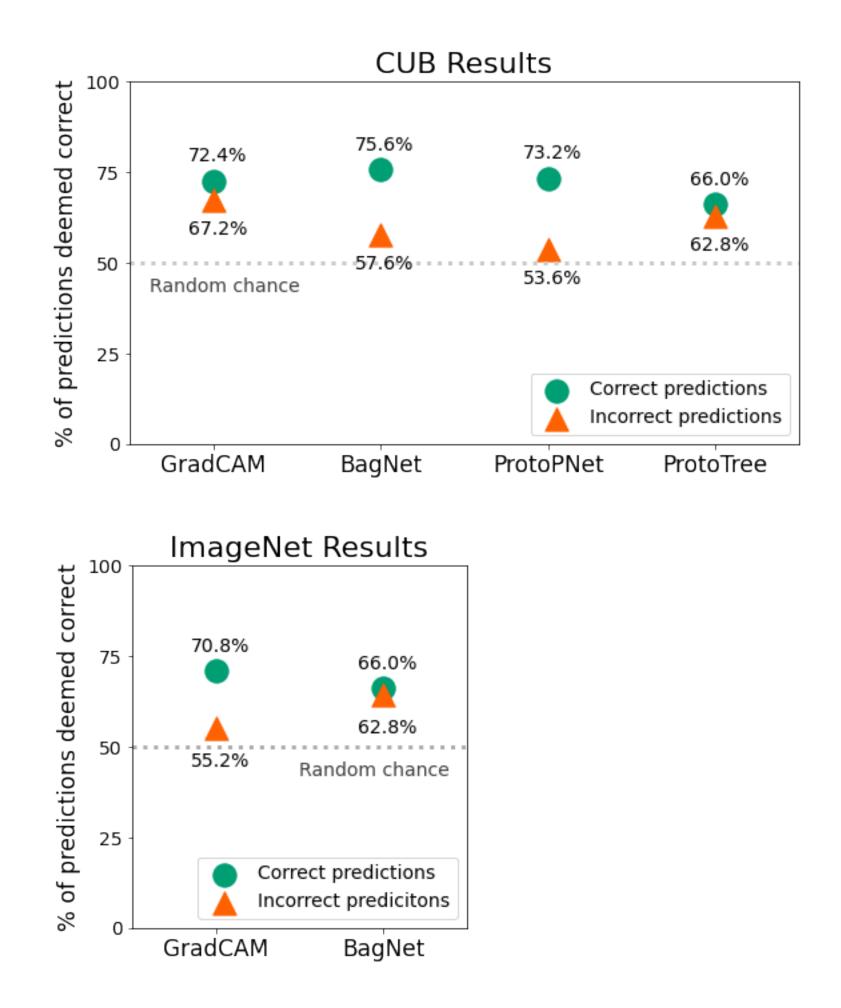


#### **Agreement task**

How confident are you in the model's prediction?

Finding #1: Prototype similarities often do not **align** with human notions of similarity.

> Finding #2: Agreement task reveals confirmation bias.



#### Q. What do you think about the model's prediction?

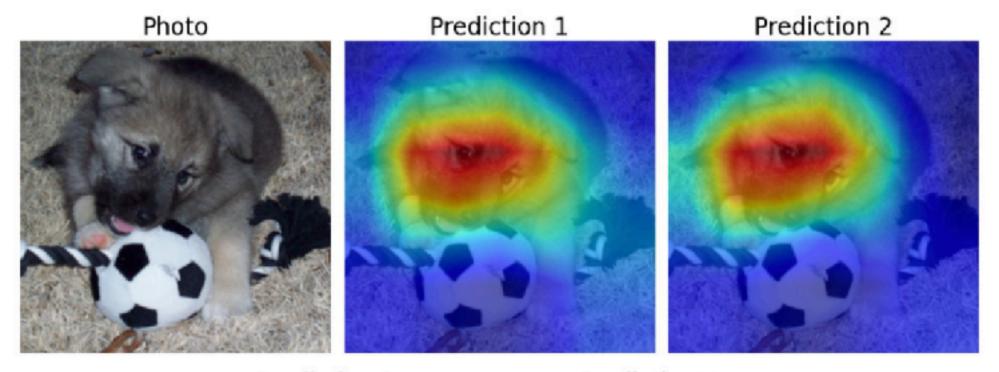
- Search Fairly confident that prediction is *correct*
- Somewhat confident that prediction is *correct*
- O Somewhat confident that prediction is incorrect
- O Fairly confident that prediction is incorrect



### **Distinction task**

Which class do you think is correct?

Finding #3: Participants struggle to identify the **correct class**, esp. for incorrect predictions.



Prediction 3 Prediction 4 1.0 (Important) 0.8 0.6 -0.4 -0.2 0 (Not important)

Q. Which class do you think is correct? ○1 ○2 ○3 ○4

#### Q. How confident are you in your answer?

- O Not confident at all
- Slightly confident
- Somewhat confident
- Fairly confident
- Completely confident

[Sunnie S. Y. Kim et al., arXiv 2021. HIVE.; Selvaraju et al., ICCV 2017] <sup>25</sup>

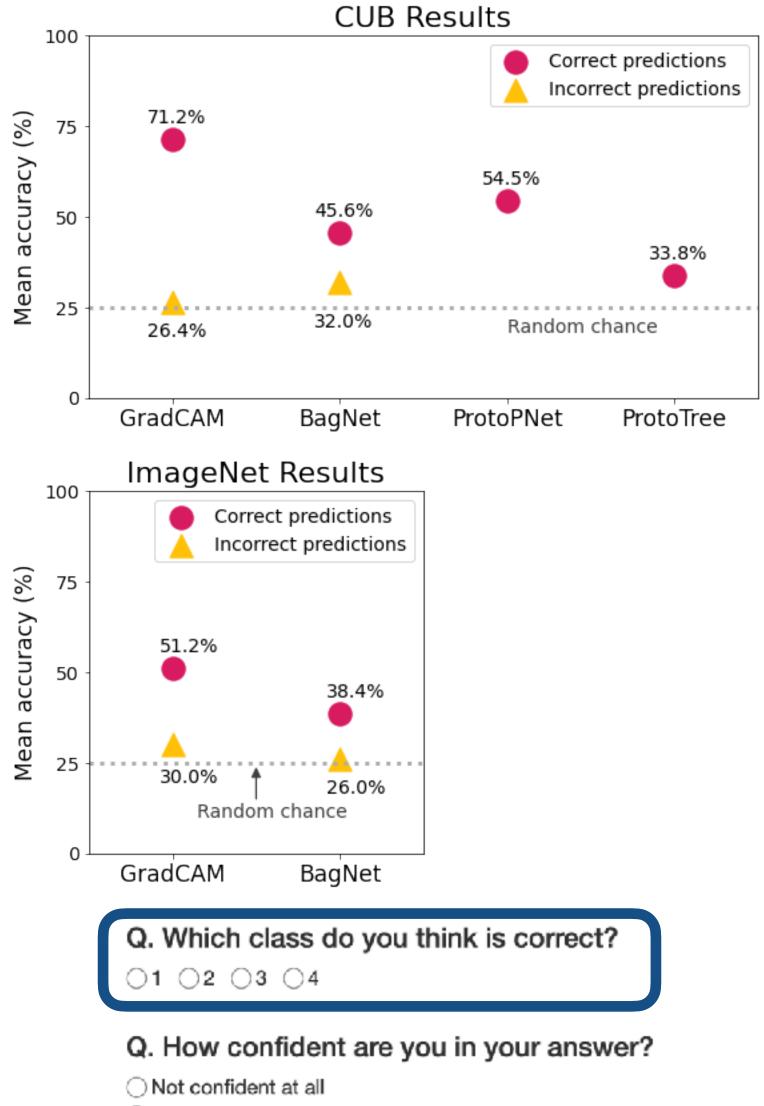


### **Distinction task**

Which class do you think is correct?

Finding #3: Participants struggle to identify the **correct class**, esp. for incorrect predictions.

**Goal:** Interpretability should help humans identify and explain model errors.



- Slightly confident
- Somewhat confident
- Fairly confident
- Completely confident

[Sunnie S. Y. Kim et al., arXiv 2021. HIVE.] <sup>26</sup>



## 3. Falsifiable hypothesis testing

Finding #1: Prototype similarities often do not align with human notions of similarity.

> Finding #2: Agreement task reveals confirmation bias.

**Finding #3:** Participants struggle to identify the correct class, esp. for incorrect predictions.

[Sunnie S. Y. Kim et al., arXiv 2021. HIVE.] <sup>27</sup>



## 3. Falsifiable hypothesis testing

Finding #1: Prototype similarities often do not **align** with human notions of similarity.

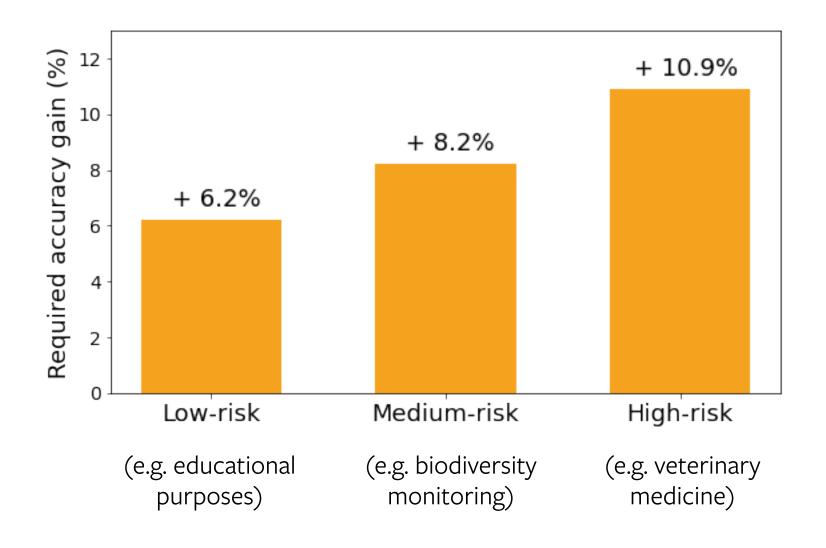
> Finding #2: Agreement task reveals confirmation bias.

**Finding #3:** Participants struggle to identify the **correct class**, esp. for incorrect predictions.

Finding #4: Participants prefer interpretability over accuracy, esp. in high-risk settings.

### Interpretability-accuracy tradeoff

Q: What is the minimum accuracy of a baseline model that would convince you to use it over a model with explanations?



[Sunnie S. Y. Kim et al., arXiv 2021. HIVE.] <sup>28</sup>



## Challenges for human evaluation

- Skill cost: web development skills
- Financial cost: budget for AMT experiments
- Time cost: human study design and iteration (e.g. task feasibility, IRB approval, quality control)

**Takeaway:** As a research community, invest in and reward human evaluation studies (like dataset development).



29

## Roadmap

- **Automated** evaluation of interpretability  $\rightarrow$  human-centered evaluation 1. Sunnie S. Y. Kim, Nicole Meister, Vikram V. Ramaswamy, Ruth Fong, Olga Russakovsky, arXiv 2021. HIVE: Evaluating the Human Interpretability of Visual Explanations.
- Explanations via labelled attributes -> explanations via labelled attributes and unlabelled features 2. Vikram V. Ramaswamy, Sunnie S. Y. Kim, Nicole Meister, Ruth Fong, Olga Russakovsky, arXiv 2022. ELUDE: Generating Interpretable Explanations via a Decomposition into Labelled and Unlabelled Features.
- Interpretability of **supervised** models  $\rightarrow$  interpretability of **self-supervised** models 3. Iro Laina, Ruth Fong, Andrea Vedaldi, NeurIPS 2020. Quantifying Learnability and Describability of Visual Concepts Emerging in Representation Learning.
- **Static** visualizations → **interactive** visualizations 4. Ruth Fong, Alexander Mordvintsev, Andrea Vedaldi, Chris Olah, VISxAI 2021. Interactive Similarity Overlays.



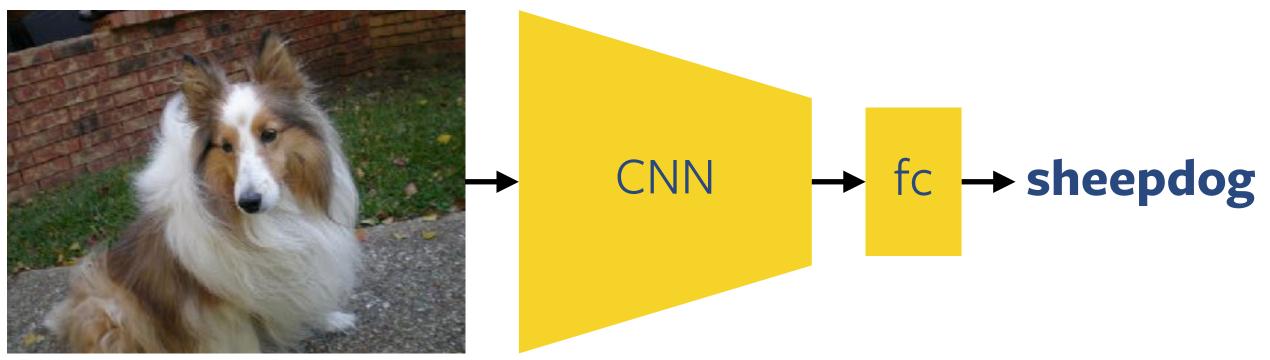
Vikram V. Ramaswamy





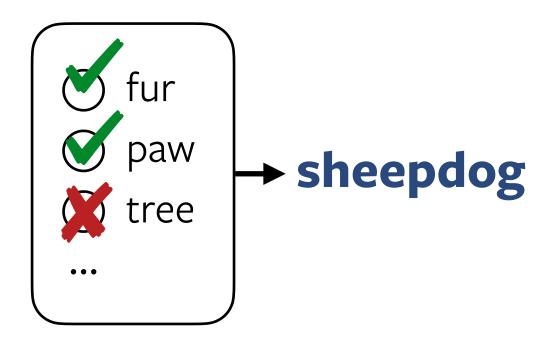
## Concept-based explanations

### Why did the model predict **sheepdog**?



**Pro:** Labelled concepts are interpretable to humans

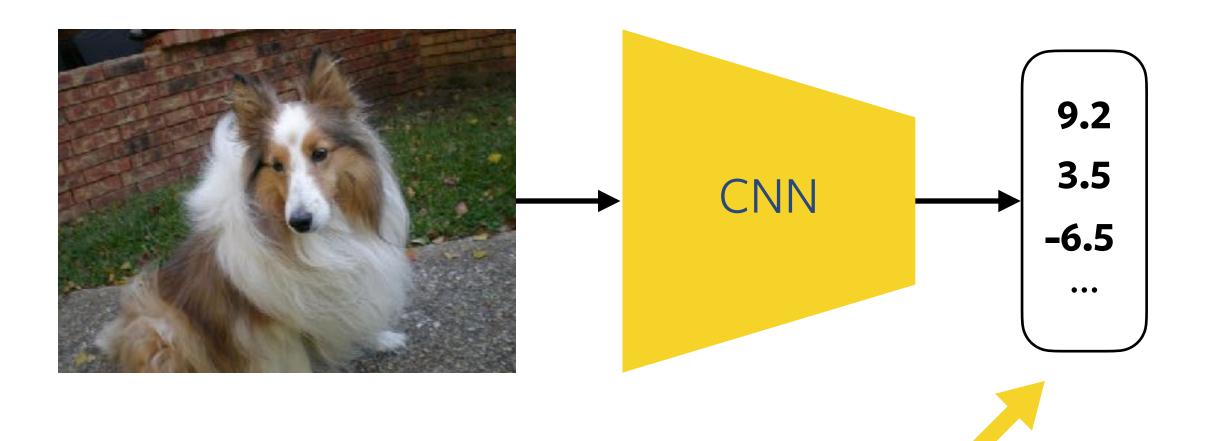
### Concept-based explanation





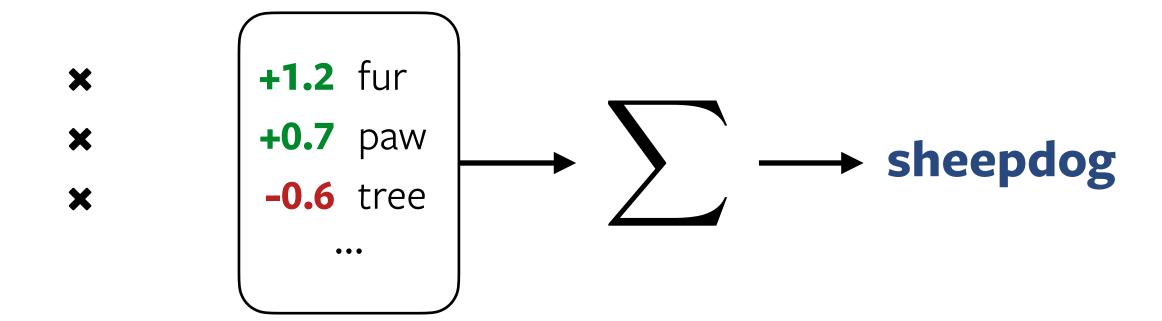
## Concept Bottleneck: Linear Combination of Labelled Attributes

Predict present or Linearly combine with absence of attribute attribute weights



**Con:** Problems with predicting fractional values

- hard to interpret
- can encode hidden information



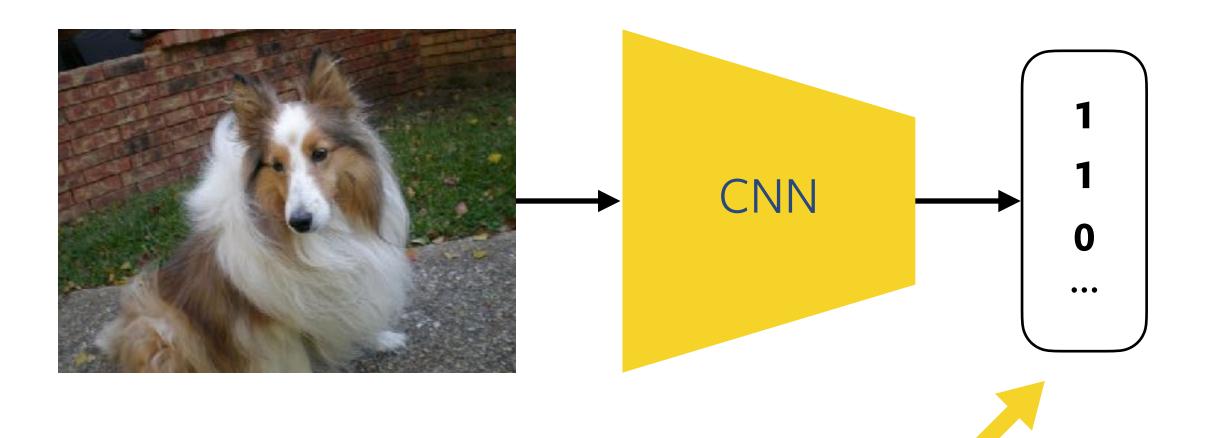
attribute weights for **sheepdog** 

[Koh\*, Nguyen\*, Tang\* et al., ICML 2020] <sup>32</sup>



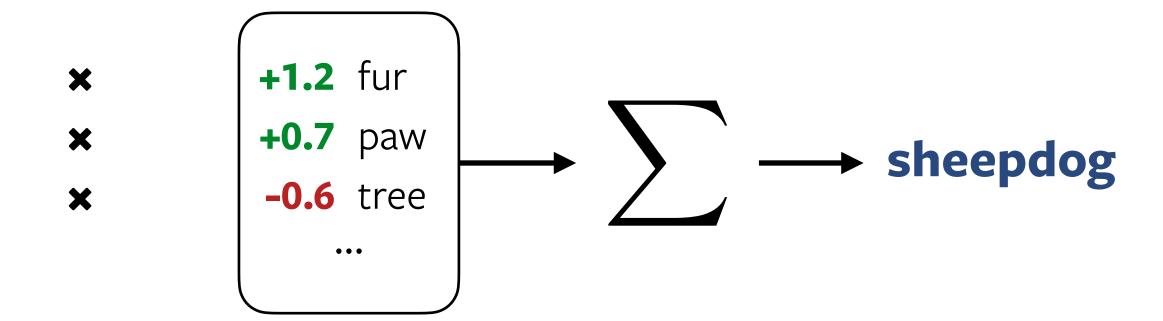
## Concept Bottleneck: Linear Combination of Labelled Attributes

Predict present or Linearly combine with absence of attribute attribute weights



**Con:** Problems with predicting fractional values

- hard to interpret
- can encode hidden information

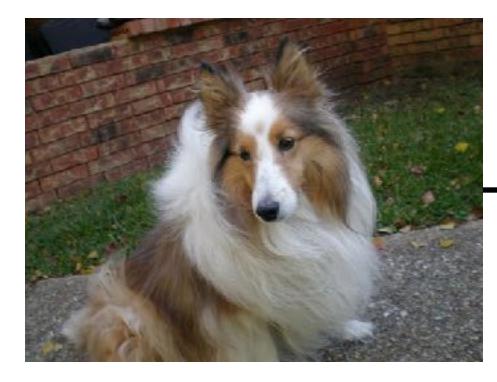


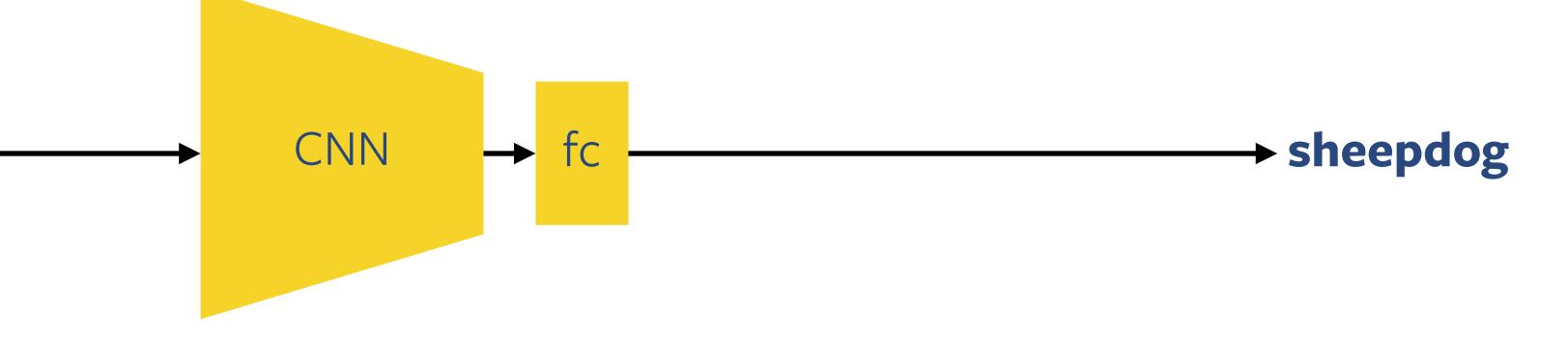
attribute weights for **sheepdog** 

[Koh\*, Nguyen\*, Tang\* et al., ICML 2020] <sup>33</sup>



# ELUDE: Explanation via a Labelled and Unlabelled DEcomposition of features



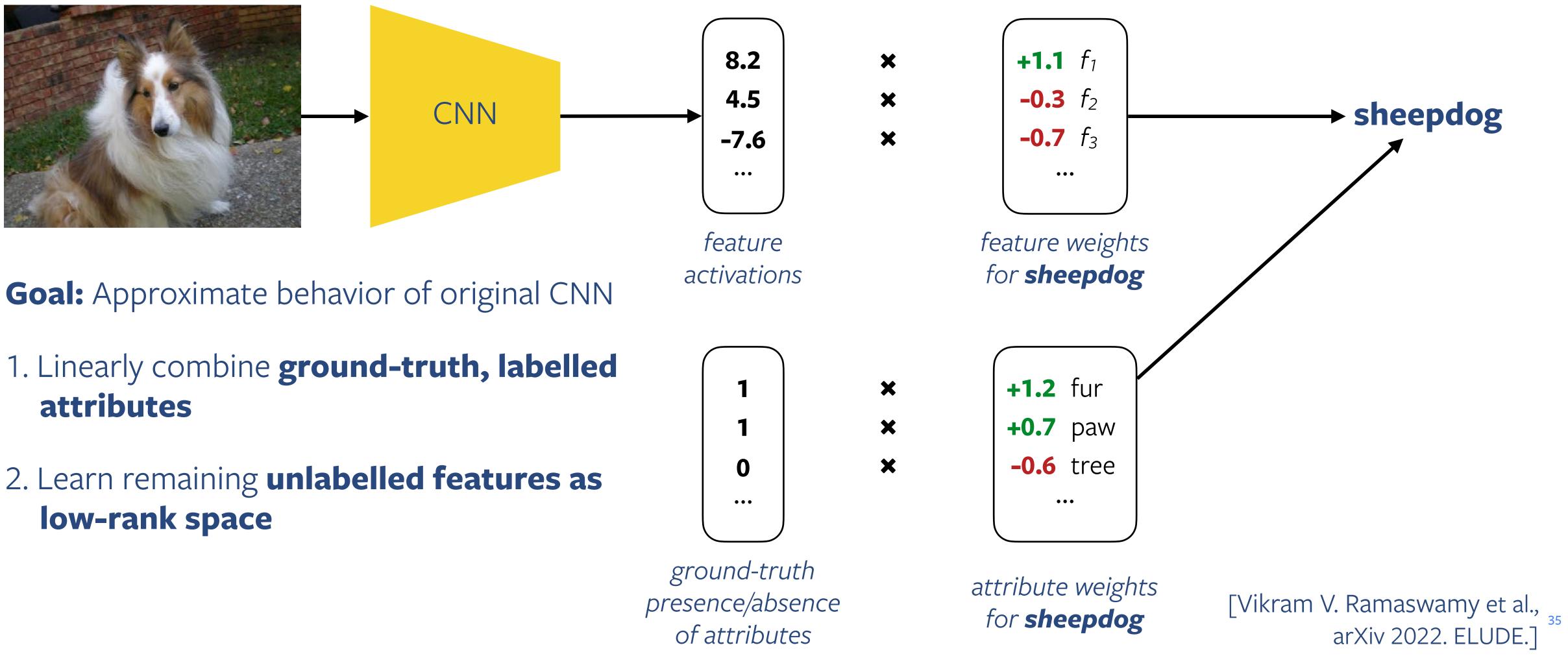


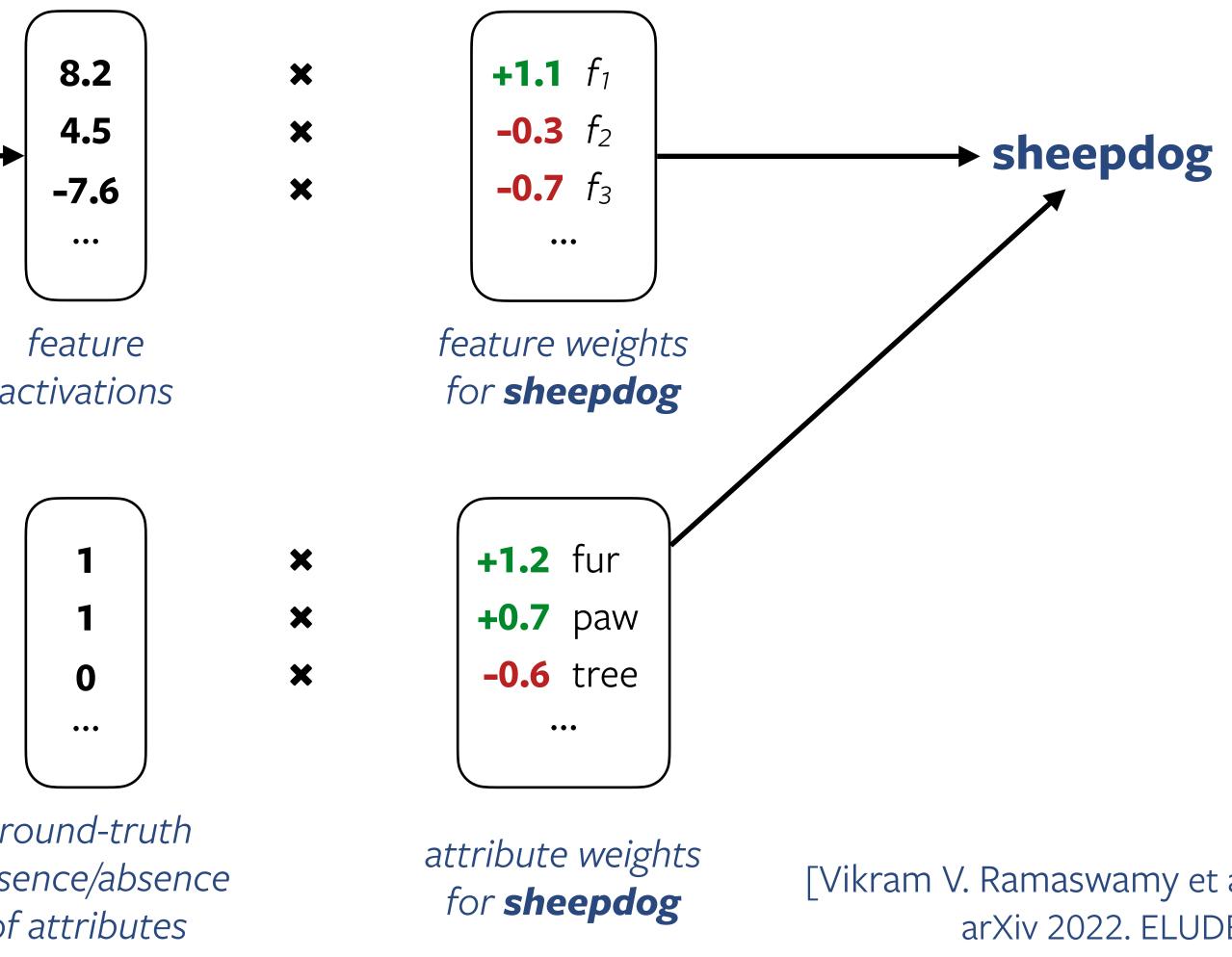
**Goal:** Approximate behavior of original CNN

[Vikram V. Ramaswamy et al., arXiv 2022. ELUDE.] <sup>34</sup>



## ELUDE: Decomposition of labelled and unlabelled features





# Attributes only: % of model explained via labelled attributes decreases as task complexity increases

| Task                                                         | % Explained |
|--------------------------------------------------------------|-------------|
| 2-way scene classification<br>(indoor vs. outdoor)           | 95.7        |
| 16-way scene classification<br>(home/hotel, workplace, etc.) | 46.2        |
| 365-way scene classification (airfield, bowling alley, etc.) | 28.8        |

Without fractional values encoding hidden information, attribute-only approaches are limited.

[Vikram V. Ramaswamy et al., arXiv 2022. ELUDE.] <sup>36</sup>



## Attributes only: % of model explained via labelled attributes decreases as task complexity increases

| Scene group                | TPR  |
|----------------------------|------|
| home/hotel                 | 99.0 |
| comm-buildings/towns       | 93.5 |
| water/ice/snow             | 60.6 |
| forest/field/jungle        | 40.2 |
| workplace                  | 14.2 |
| <pre>shopping-dining</pre> | 12.4 |
| cultural/historical        | 6.5  |
| cabins/gardens/farms       | 4.7  |
| outdoor-transport          | 3.2  |
| indoor-transport           | 0.0  |
| indoor-sports/leisure      | 0.0  |
| indoor-cultural            | 0.0  |
| mountains/desert/sky       | 0.0  |
| outdoor-manmade            | 0.0  |
| outdoor-fields/parks       | 0.0  |
| industrial-construction    | 0.0  |

Without fractional values encoding hidden information, attribute-only approaches are limited.

[Vikram V. Ramaswamy et al., arXiv 2022. ELUDE.] 37



## Features + attributes: Unlabelled features correspond to humaninterpretable concepts



| Scene group                | TPR  |
|----------------------------|------|
| home/hotel                 | 99.0 |
| comm-buildings/towns       | 93.5 |
| water/ice/snow             | 60.6 |
| forest/field/jungle        | 40.2 |
| workplace                  | 14.2 |
| <pre>shopping-dining</pre> | 12.4 |
| cultural/historical        | 6.5  |
| cabins/gardens/farms       | 4.7  |
| outdoor-transport          | 3.2  |
| indoor-transport           | 0.0  |
| indoor-sports/leisure      | 0.0  |
| indoor-cultural            | 0.0  |
| mountains/desert/sky       | 0.0  |
| outdoor-manmade            | 0.0  |
| outdoor-fields/parks       | 0.0  |
| industrial-construction    | 0.0  |

attributes only [Vikram V. Ramaswamy et al., arXiv 2022. ELUDE.] <sup>38</sup>



## Challenges for concept-based methods

- Attributes-only approaches are incomplete
- Develop more methods to explain the "remainder"
  - Interpretable Basis Decomposition (IBD) [Zhou et al., ECCV 2018]
  - Automatic Concept-based Explanations (ACE) [Ghorbani et al., NeurIPS 2019]
  - ConceptSHAP [Yeh et al., NeurIPS 2020]
- Ensure that concept-based explanations are truly human-interpretable

**Takeaway:** Be realistic about the benefits and limitations of an interpretability method and work towards addressing the limitations.



## Roadmap

- **Automated** evaluation of interpretability → **human-centered** evaluation 1. Sunnie S. Y. Kim, Nicole Meister, Vikram V. Ramaswamy, Ruth Fong, Olga Russakovsky, arXiv 2021. HIVE: Evaluating the Human Interpretability of Visual Explanations.
- 2. Explanations via labelled attributes → explanations via labelled attributes and unlabelled features Vikram V. Ramaswamy, Sunnie S. Y. Kim, Nicole Meister, Ruth Fong, Olga Russakovsky, arXiv 2022. ELUDE: Generating Interpretable Explanations via a Decomposition into Labelled and Unlabelled Features.
- Interpretability of **supervised** models  $\rightarrow$  interpretability of **self-supervised** models 3. Iro Laina, Ruth Fong, Andrea Vedaldi, NeurIPS 2020. Quantifying Learnability and Describability of Visual Concepts Emerging in Representation Learning.
- **Static** visualizations → **interactive** visualizations 4. Ruth Fong, Alexander Mordvintsev, Andrea Vedaldi, Chris Olah, VISxAI 2021. Interactive Similarity Overlays.

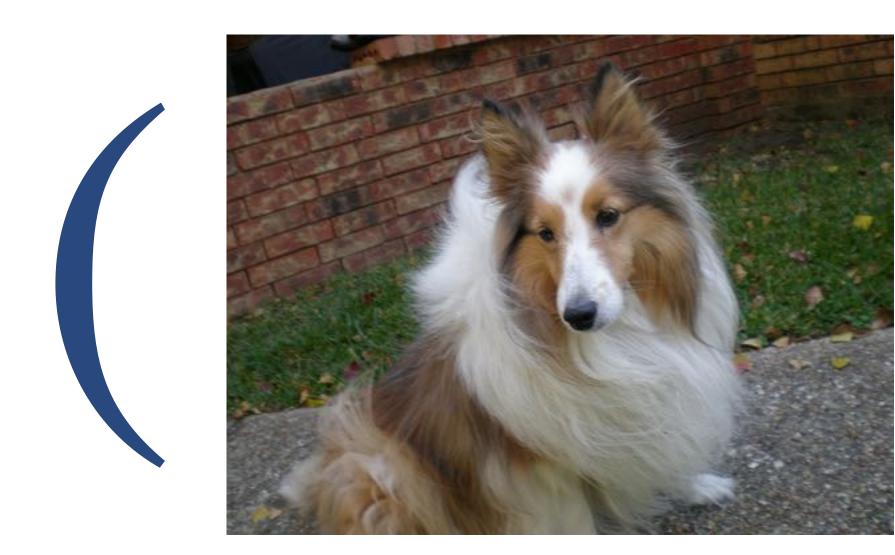


### Iro Laina





## Supervised Learning





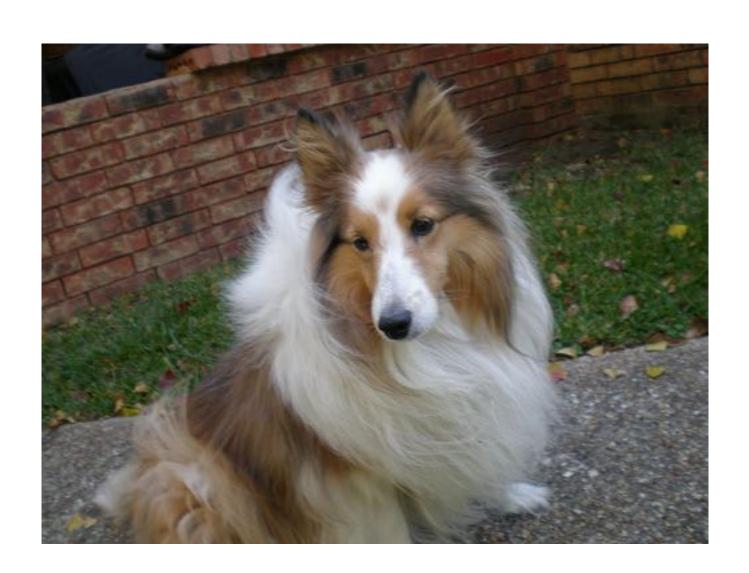
# sheepdog



У

41

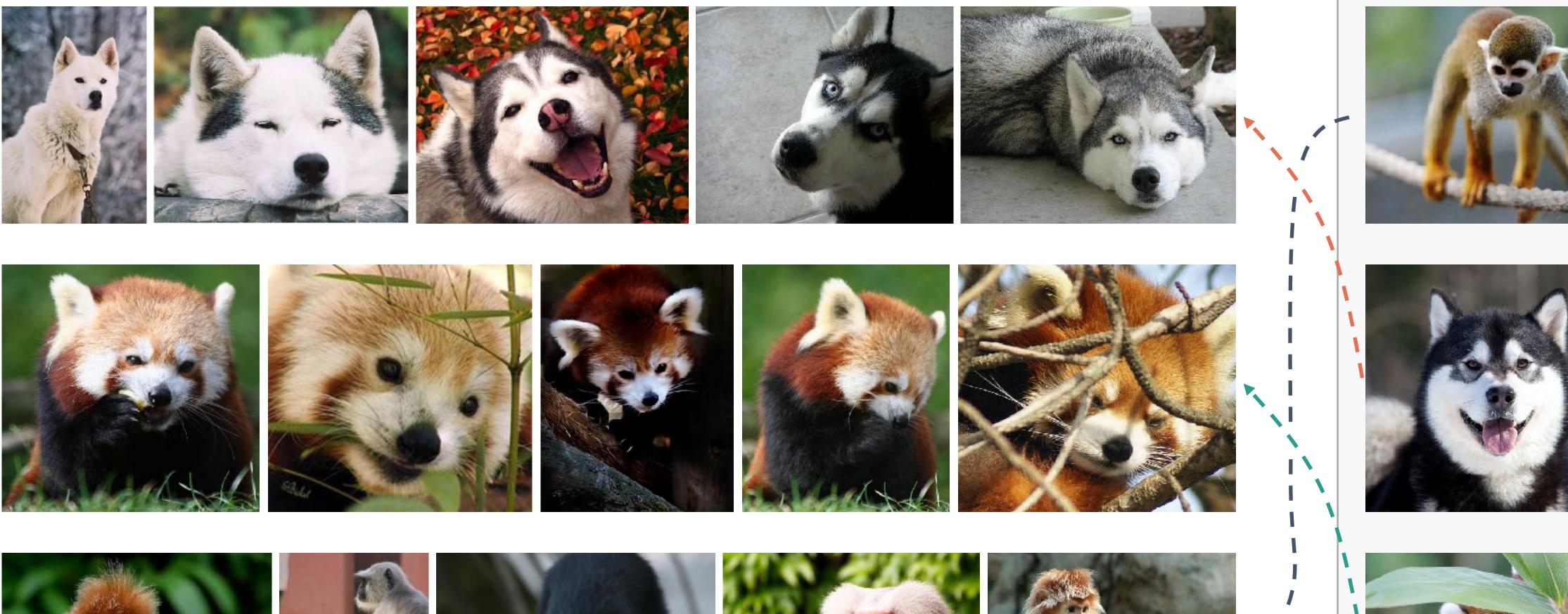
## Self-Supervised Learning

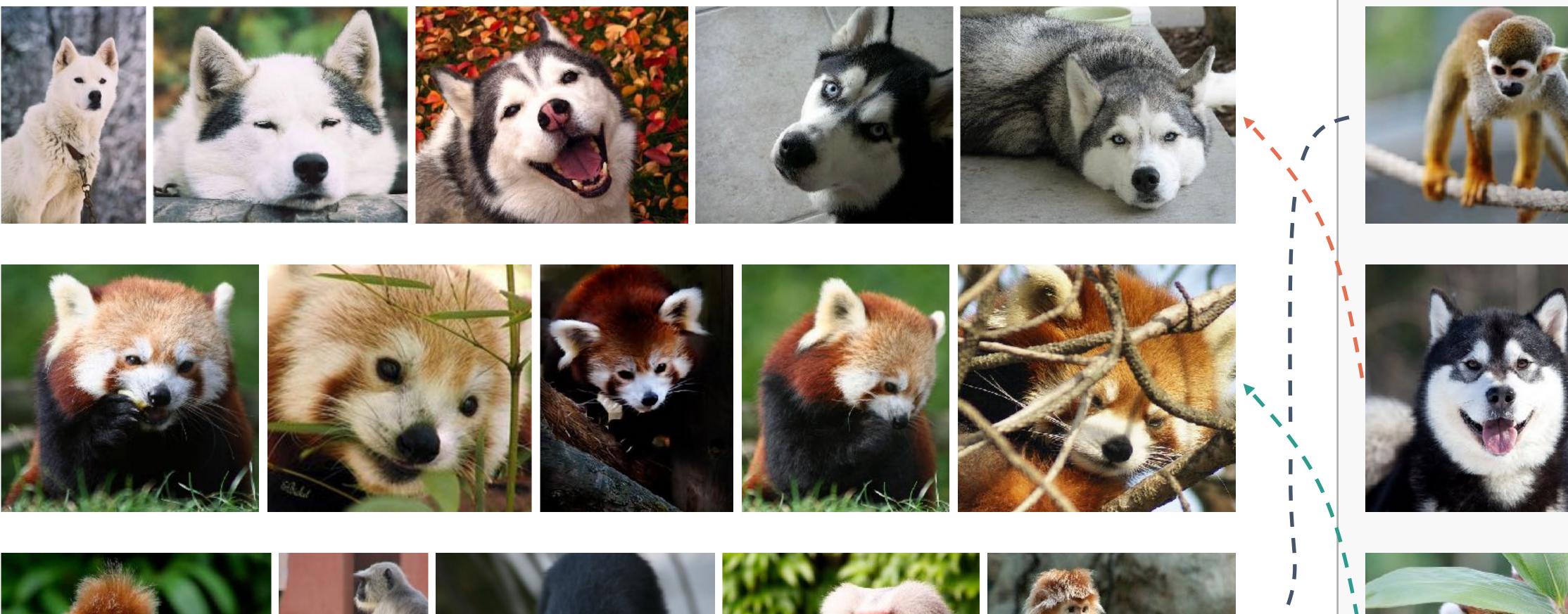


X



## Visual Concept













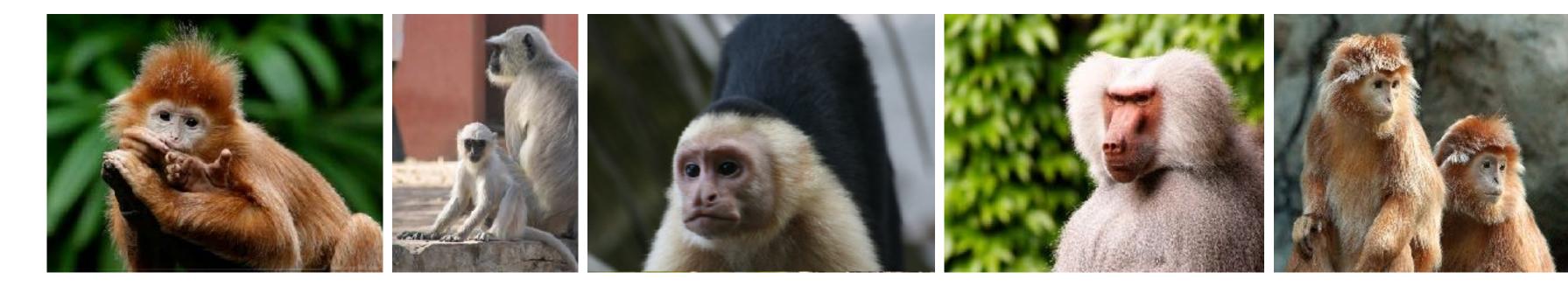




## Visual Concept













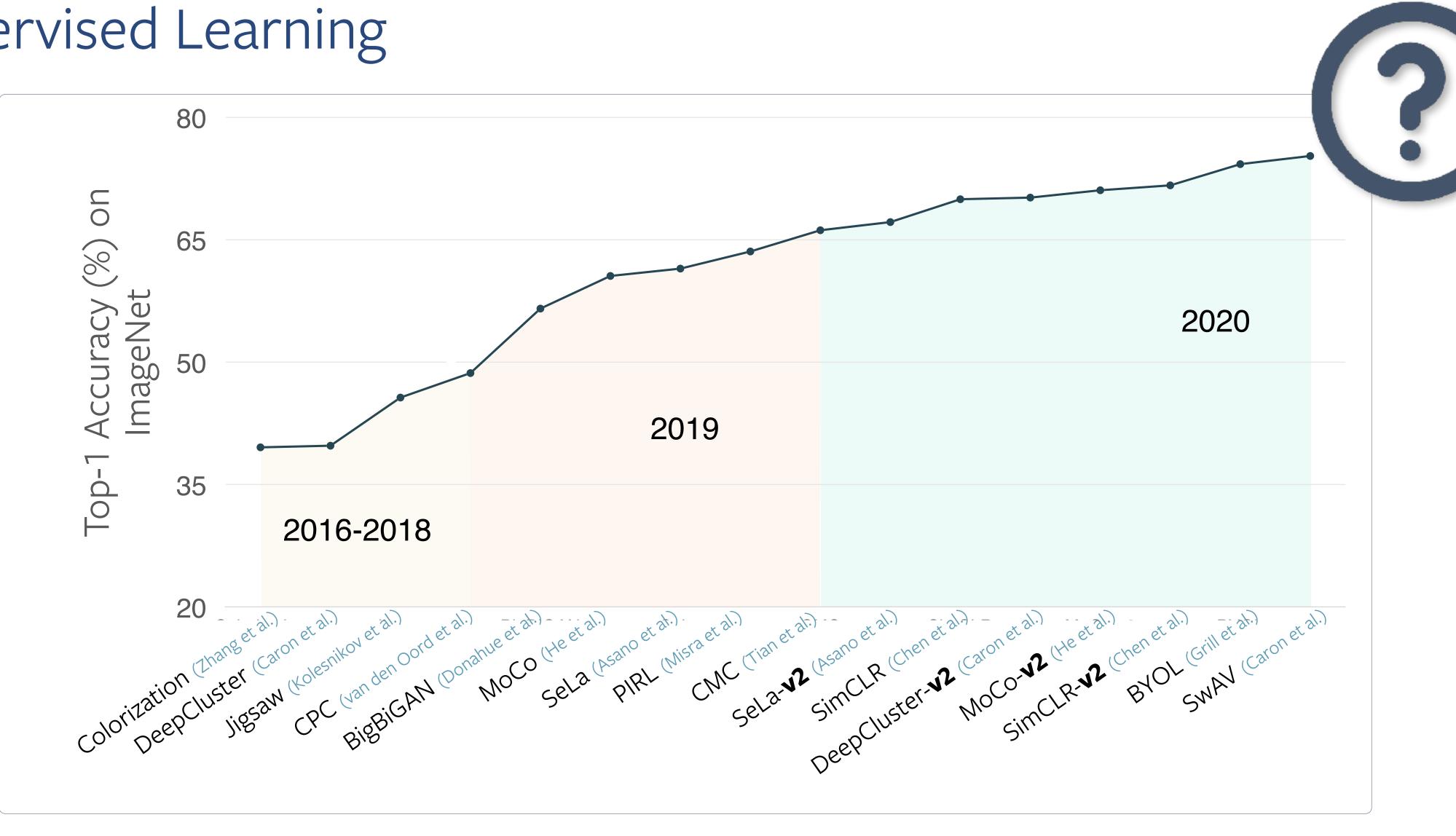
## Query







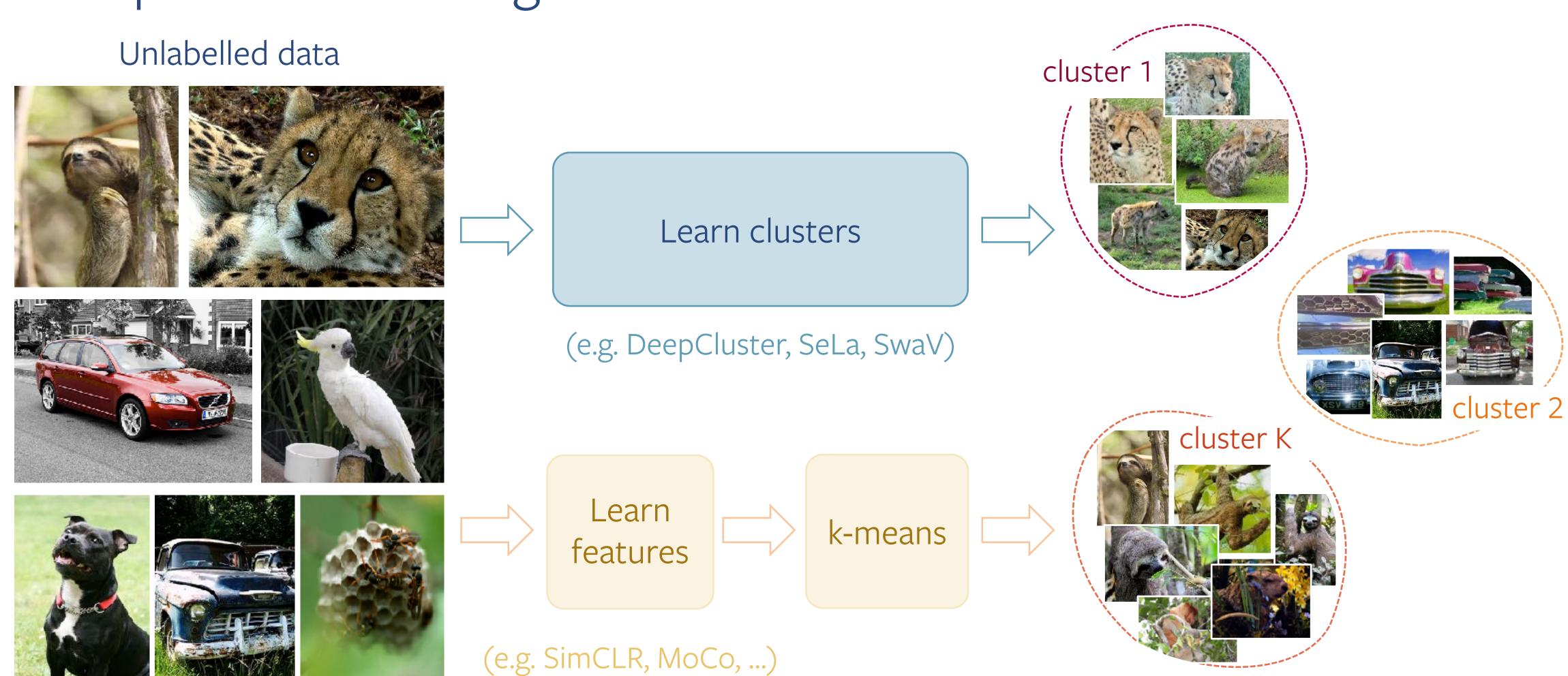
### Self-Supervised Learning







### Self-Supervised Learning



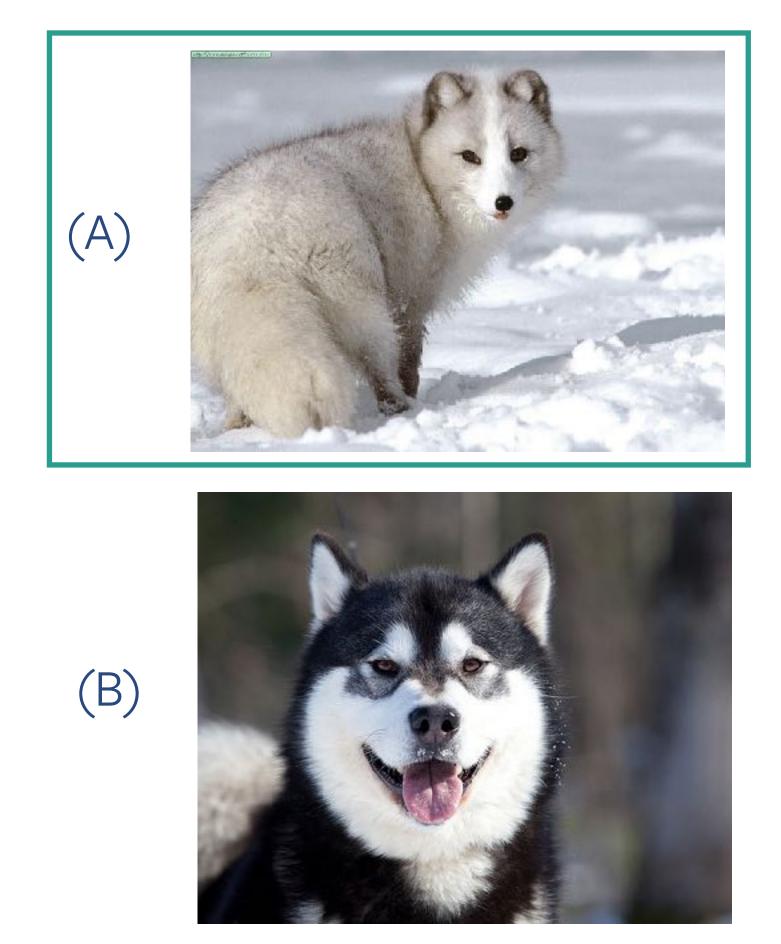




## Learnability



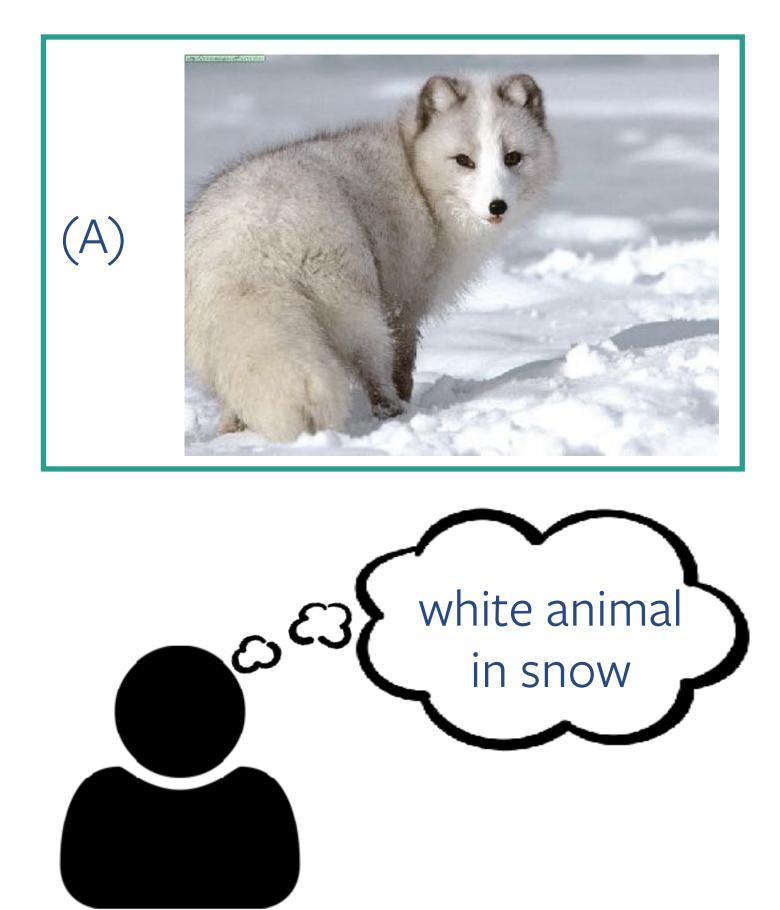




## Learnability

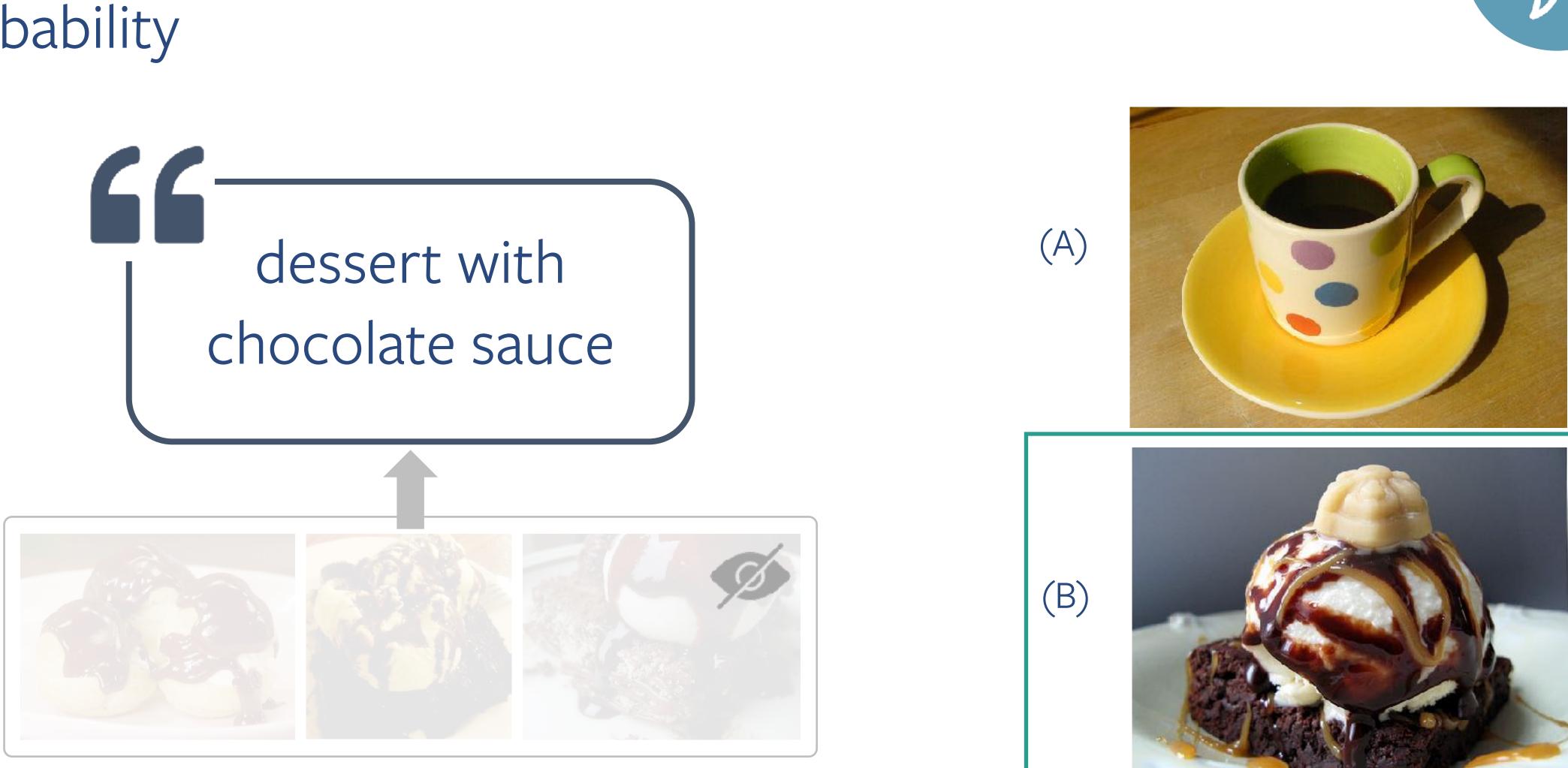






### Describability

# dessert with chocolate sauce









### Describability

## 6 dessert with chocolate sauce



Manual



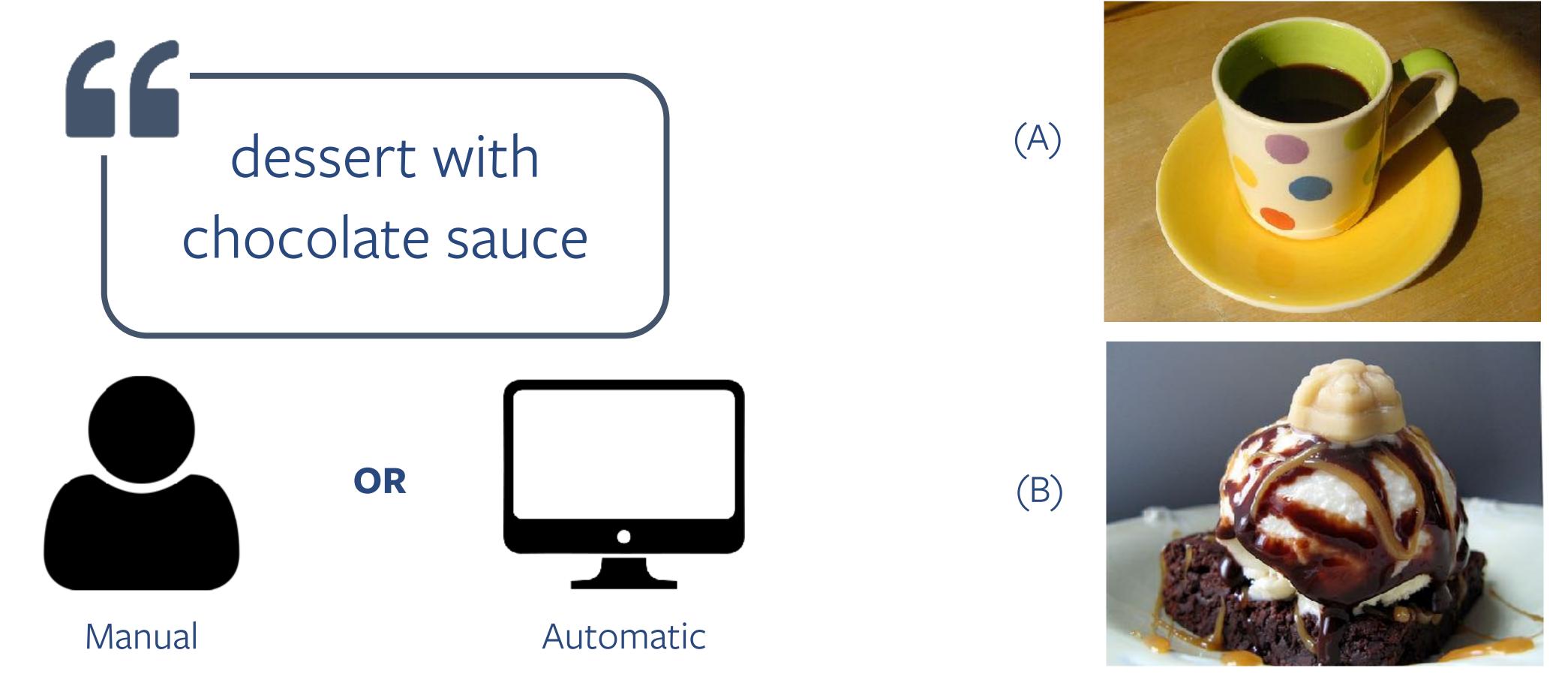


[Iro Laina, et al., NeurIPS 2020. Quantifying Learnability and Describability.] 50

(A)

(B)

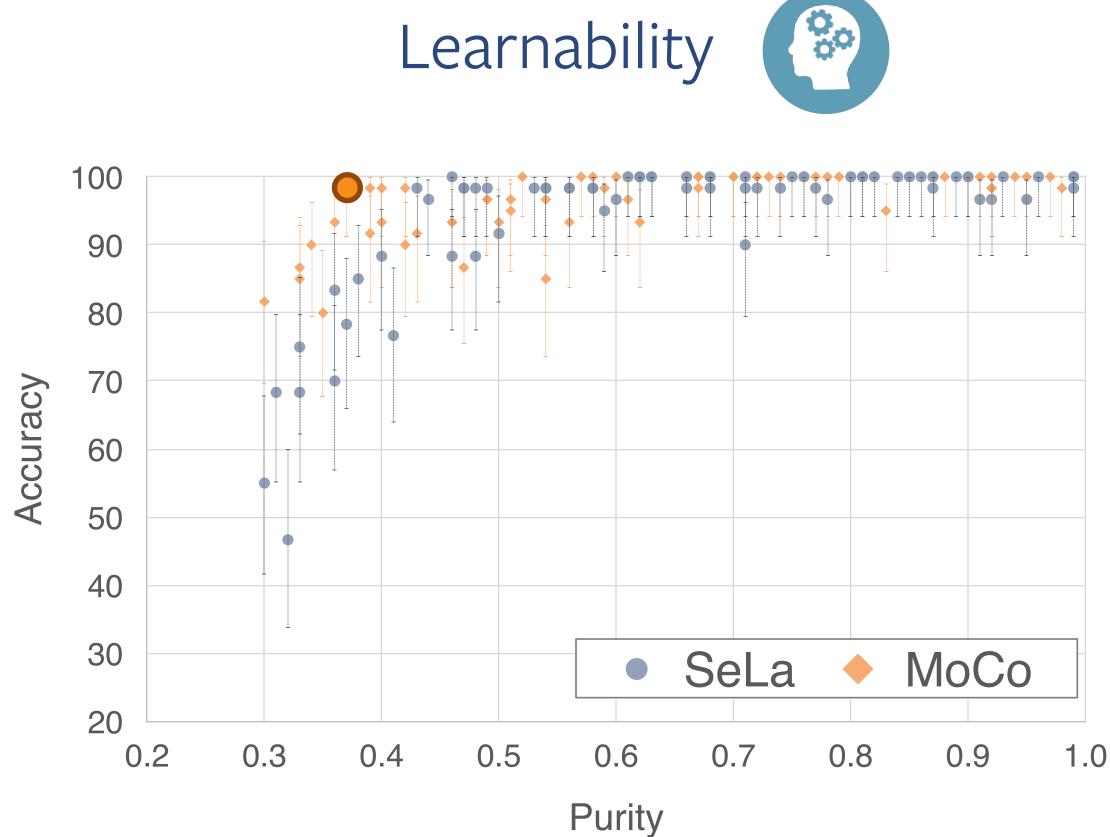
### Describability











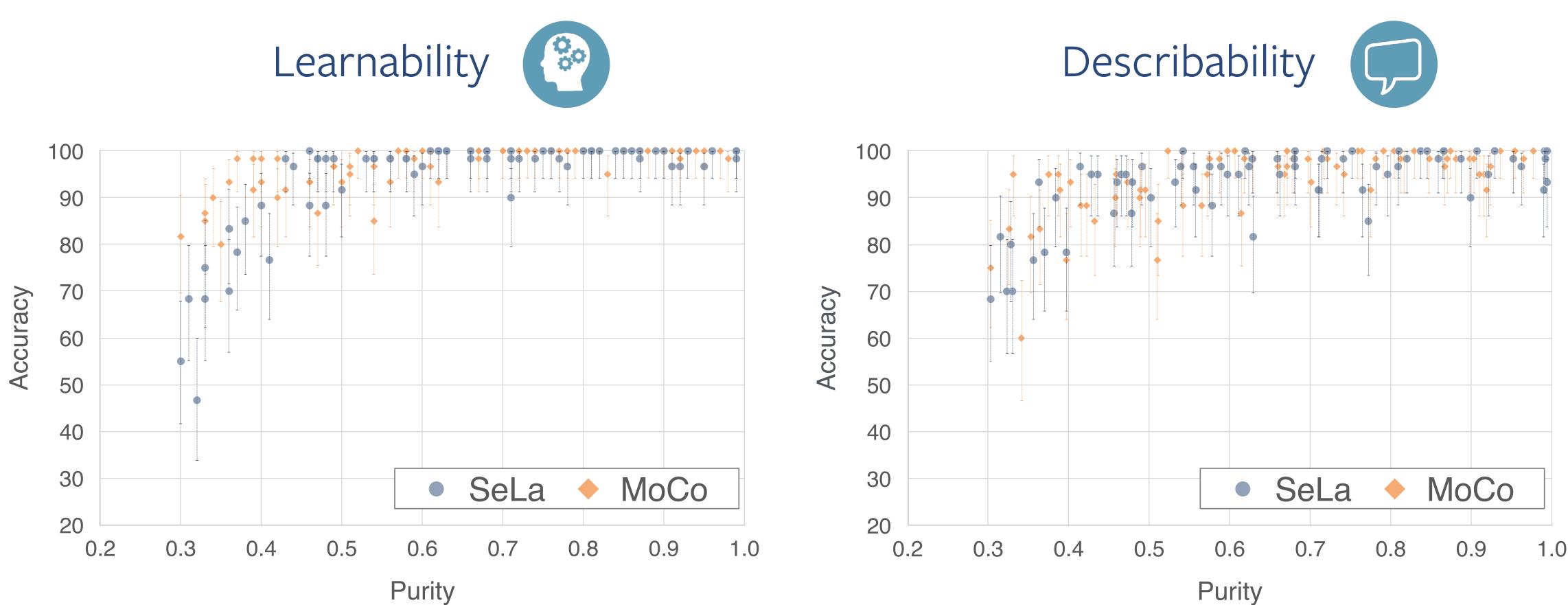
### **ImageNet cluster purity:**

how correlated is a cluster's contents to a single ImageNet label?

**purity = 1**  $\rightarrow$  cluster only contains images from a single ImageNet label

[Iro Laina, et al., NeurIPS 2020. Quantifying Learnability and Describability.] [Asano et al., ICLR 2020; He et al., CVPR 2020]





[Iro Laina, et al., NeurIPS 2020. Quantifying Learnability and Describability.] [Asano et al., ICLR 2020; He et al., CVPR 2020]



### ImageNet cluster purity

### SeLa: cluster 393 (0.668)

Findings

a newborn baby lying on a bed

### SeLa: cluster 332 (0.542) a snake on a hand





### Follow up: Laina et al., ICLR 2022.

Measuring the Interpretability of Unsupervised Representations via Quantized Reverse Probing.

### MoCo: cluster 2335 (0.459)

view of the mountains from the lake



[Iro Laina, et al., NeurIPS 2020. Quantifying Learnability and Describability.] [Asano et al., ICLR 2020; He et al., CVPR 2020]







## Challenges for novel frontiers in deep learning

- Need to contextualize interpretability to the novel frontiers
- Lack of access to standardized implementations

Takeaway: Collaboration and buy-in from novel research areas is crucial for interpretability in those frontiers.



## Roadmap

- **Automated** evaluation of interpretability → **human-centered** evaluation 1. Sunnie S. Y. Kim, Nicole Meister, Vikram V. Ramaswamy, Ruth Fong, Olga Russakovsky, arXiv 2021. HIVE: Evaluating the Human Interpretability of Visual Explanations.
- 2. Explanations via labelled attributes → explanations via labelled attributes and unlabelled features Vikram V. Ramaswamy, Sunnie S. Y. Kim, Nicole Meister, Ruth Fong, Olga Russakovsky, arXiv 2022. ELUDE: Generating Interpretable Explanations via a Decomposition into Labelled and Unlabelled Features.
- Interpretability of **supervised** models  $\rightarrow$  interpretability of **self-supervised** models 3. Iro Laina, Ruth Fong, Andrea Vedaldi, NeurIPS 2020. Quantifying Learnability and Describability of Visual Concepts Emerging in Representation Learning.
- **Static** visualizations  $\rightarrow$  **interactive** visualizations 4. Ruth Fong, Alexander Mordvintsev, Andrea Vedaldi, Chris Olah, VISxAI 2021. Interactive Similarity Overlays.



### Interpretability Tools

Orig Img



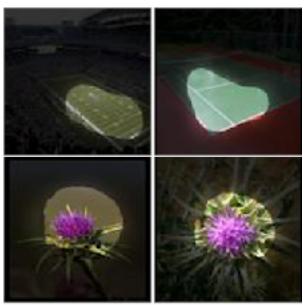


Grad CAM

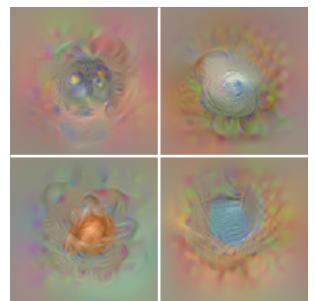


### Activation Maximization

**Feature Vis** 



Net Dissect





### Current tools render **static images**.



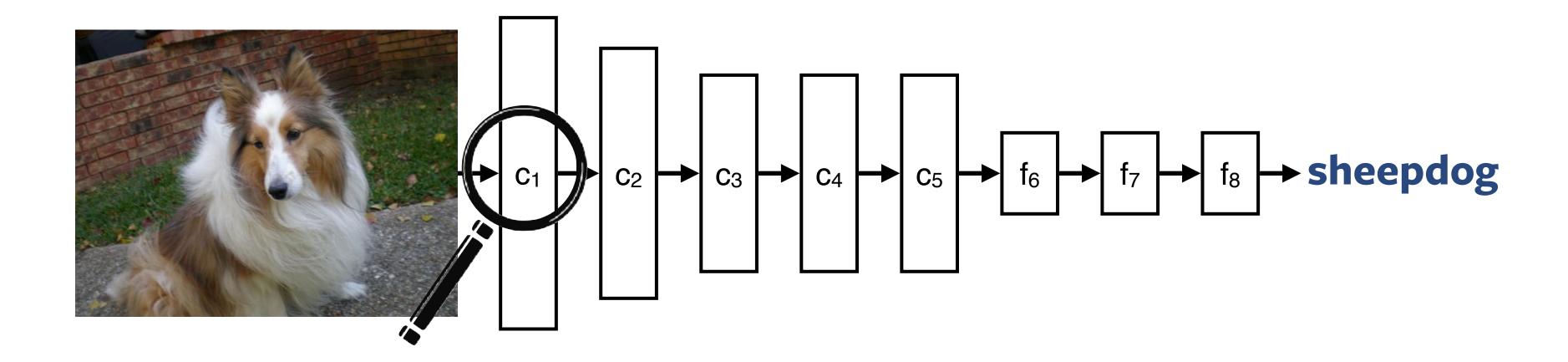


[Fong et al., ICCV 2019; Selvaraju et al., ICCV 2017; Bau et al., CVPR 2017; Mahendran & Vedaldi, IJCV 2016; Olah et al., Distill 2018; Fong et al., VISxAI 2021]





### Interpretability: Interactive, Exploratory, Easy-to-use



### How can we **easily explore** hypotheses about the model?

Acknowledgement: Chris Olah 58



### Interactive Similarity Overlays

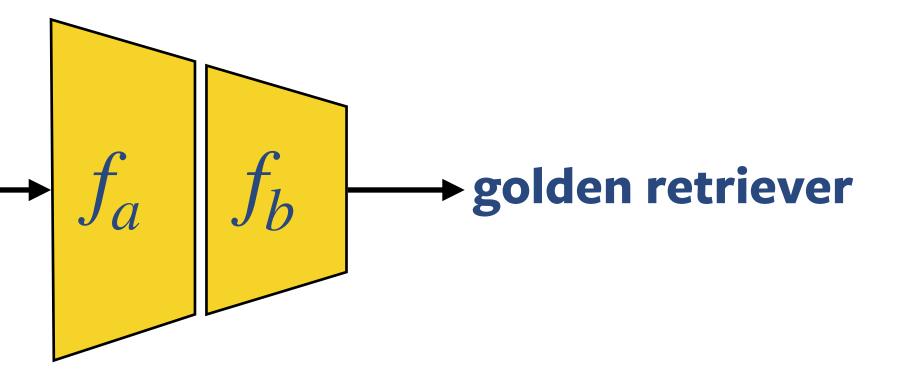


Ruth Fong, Alexander Mordvintsev, Andrea Vedaldi, Chris Olah, VISxAI 2021. Interactive Similarity Overlays.



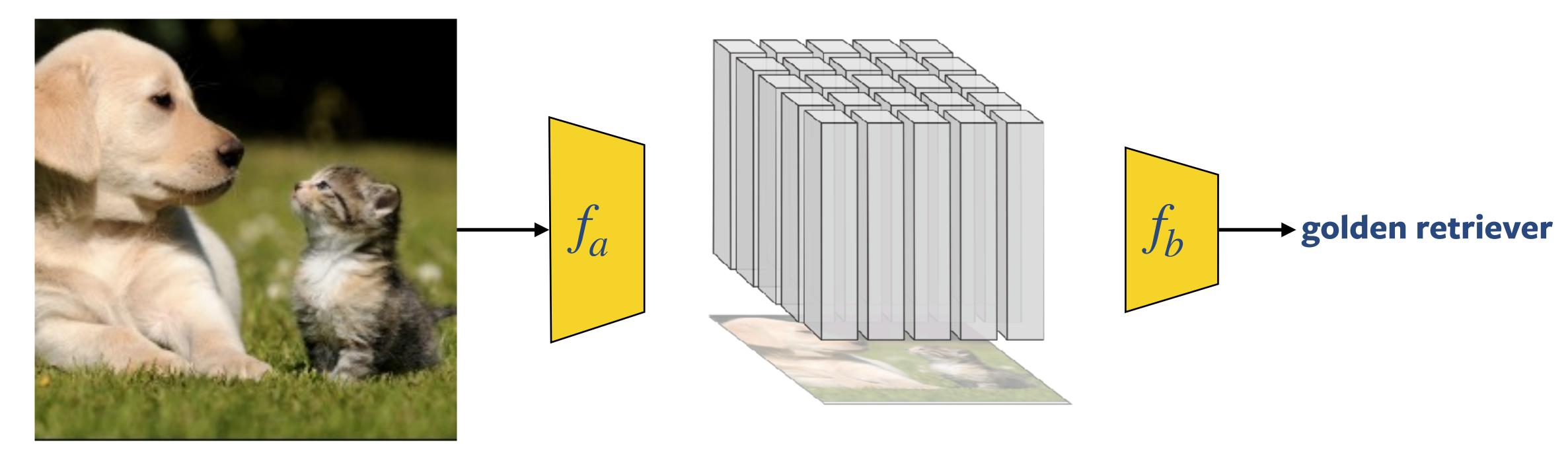
## Spatial Activations







## Spatial Activations



[Olah et al., Distill 2018] 61



### Interactive Similarity Overlays

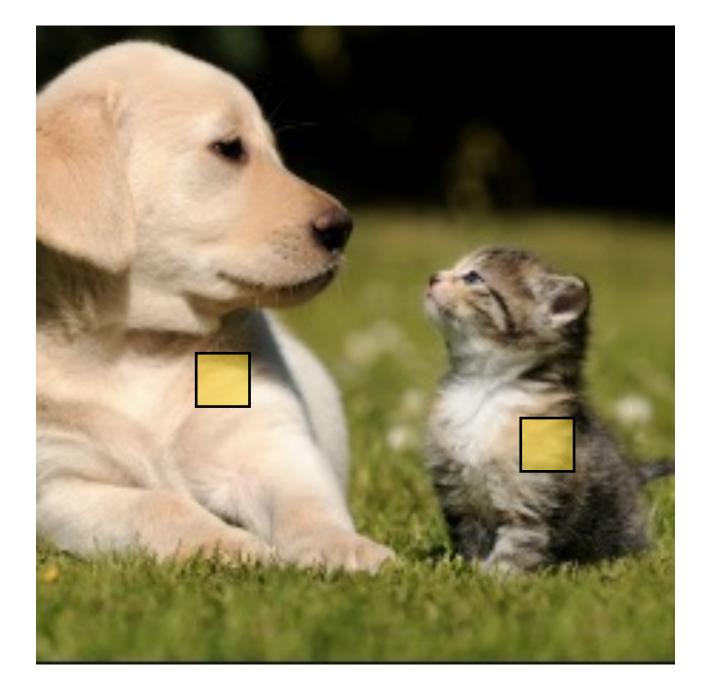


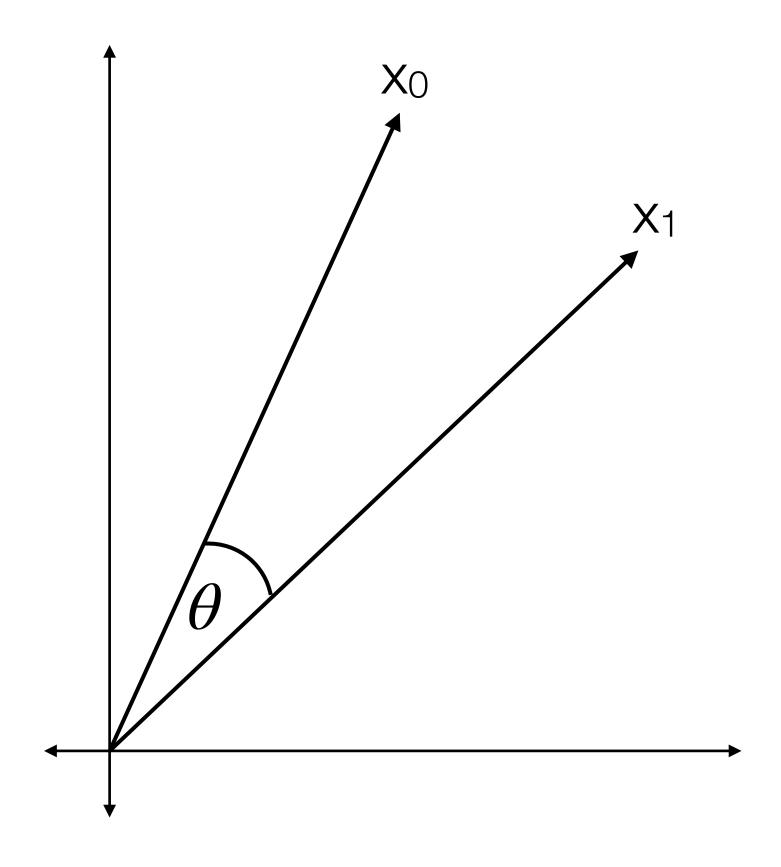
### 7.7, 0, 103.4, 6.81, 0, 0, 0, 0, 32.0, 0, 0, 0, ...]

[Olah et al., Distill 2018] 62



### Interactive Similarity Overlays

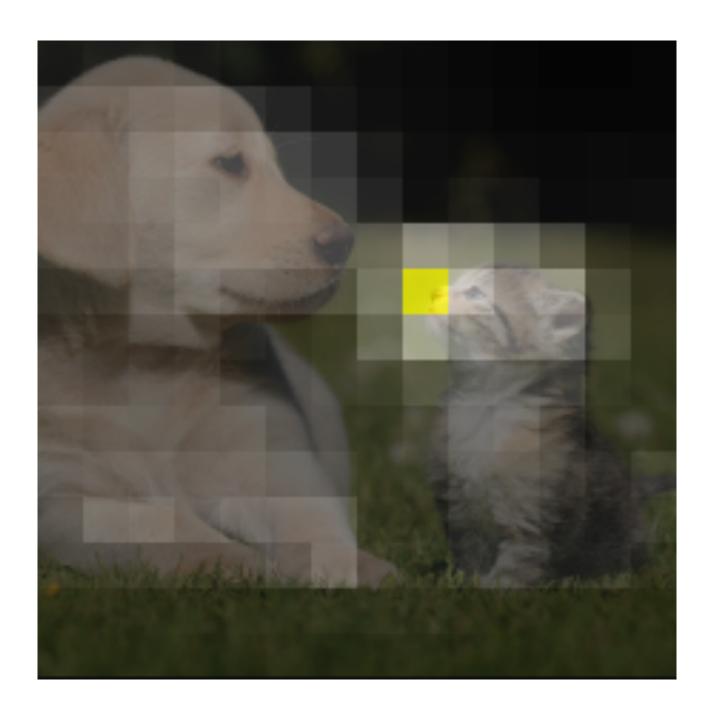




[Fong et al., VISxAI 2021. Interactive Similarity Overlays.] 63



### Live Demo: Interactive Similarity Overlays





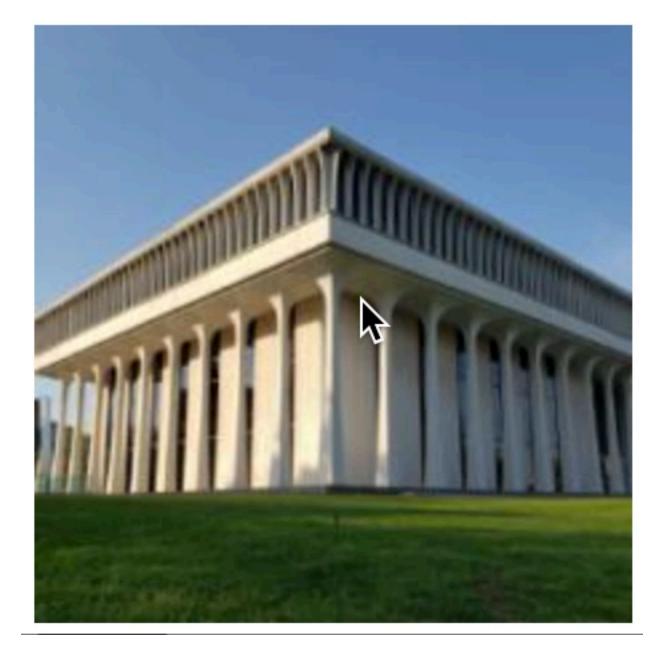
### bit.ly/interactive\_overlay

Interactive visualizations empower practitioners to easily explore model behavior.

[Fong et al., VISxAI 2021. Interactive Similarity Overlays.] 64



### Preview: Interactive Visual Feature Search









### bit.ly/interactive\_search

Devon Ulrich



Devon Ulrich and Ruth Fong, in prep 2022. Interactive Visual Feature Search. 65 Acknowledgement: David Bau



## Challenges for interactive visualizations

- Skills cost: web development skills
  - HuggingFace Spaces, Gradio, Streamlit
- Potential misuse: Intuition-based insights should be validated via quantitative experiments
- Poor incentives: software tooling for research is often not rewarded
- Inadequate publishing structures: Sparse publishing venues for interactive articles and/or visualizations
  - Distill journal hiatus
  - CVPR demo track
- Lack of cross-talk: HCI and AI communities are developing interpretability tools fairly independently

**Takeaway:** Relevant research communities should collectively invest in and reward software tooling for research, particularly interactive tools.



## Takeaways from challenges in interpretability

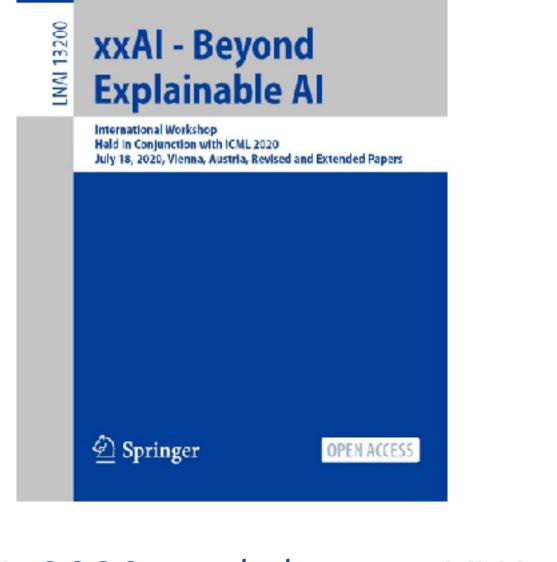
- Human studies: As a research community, invest in and reward human evaluation studies (like dataset development).
- **(Concept-based) interpretability:** Be realistic about the benefits and limitations of an interpretability method and work towards addressing the limitations.
- New frontiers: Collaboration and buy-in from novel research areas is crucial for interpretability in those frontiers.
- Interactive visualizations: Relevant research communities should collectively invest in and reward software tooling for research, particularly interactive tools.



## Directions for the next decade of interpretability

- Develop interpretability methods for **diverse domains** 
  - Beyond CNN classifiers: self-supervised learning, generative models, etc.
- 2. Center **humans** throughout the development process
  - In design, co-develop methods with real-world stakeholders.
  - In evaluation, measure human interpretability and utility of methods.
  - In deployment, package interpretability tools for the wider community.

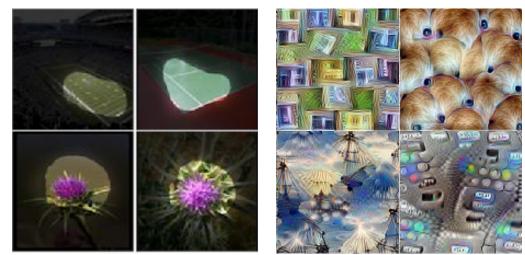
Andreas Holzinger · Randy Goebel · Ruth Fong . Taesup Moon . Klaus-Robert Müller - Wojciech Samek (Eds.)



### ICML 2020 workshop on XXAI



### An incomplete retrospective: the first decade of interpretability



Feature visualization (2013-2018) Activation Max., Feature Inversion, Net Dissect, Feature Vis.



### Attribution heatmaps (2013-2019) Gradient, Grad-CAM, Occlusion, Perturbations, RISE

[Selvaraju et al., ICCV 2017; Fong\* & Patrick\* et al., ICCV 2019; 69 Bau\* & Zhou\* et al., CVPR 2017; Olah et al., Distill 2017; Koh\*, Nguyen\*, Tang\* et al., ICML 2020]

Primarily focused on understanding and approximating **CNNs** 

| <image/> | CNN<br>CNN<br>CNN<br>CNN<br>CNN<br>CNN<br>Classifier<br>bird species<br>beak length | 2022 |
|----------|-------------------------------------------------------------------------------------|------|
|----------|-------------------------------------------------------------------------------------|------|

### Interpretable-by-design (2020-now) Concept Bottleneck, ProtoPNet, ProtoTree





## Into the future: the next decade of interpretability







Iro Laina



Devon Ulrich





Chris Olah



Andrea Vedaldi





Sunnie S. Y. Kim



Vikram V. Ramaswamy







Alex Mordvintsev



Olga Russakovsky

bit.ly/vai-lg-postdoc

We're hiring postdocs!



Talk acknowledgements: Brian Zhang, Sunnie S. Y. Kim, Vikram V. Ramaswamy, Olga Russakovsky



Thank You